ecandeloro's picture
Update app.py
2dea304 verified
raw
history blame
3.09 kB
import gradio as gr
examples = [
["Nevus_NCI.jpg"],
["melanoma_example.jpg"],
["ISIC_0115851.JPG"],
["mel_contact_polarized.JPG"],
["lesion2.jpg"],
["lesion3.jpg"],
# Add more images as needed
]
# Title and description
title = "🔎 Skin Cancer Image Classification - Classificazione di Tumori della Pelle"
description = """
### Description
This app classifies skin cancer images into different categories using an AI model. 🖼️✨
Upload your own image or use one of the examples to see the results.
**DISCLAIMER⚠️**\n
**This demo is for educational and informational purposes only**.It is not intended to provide a medical diagnosis, nor should it be considered a substitute for professional medical advice, diagnosis, or treatment. We are not liable for any misclassification of skin cancer images. If you have concerns about your health, please consult a healthcare professional.
### Descrizione
Questa app classifica le immagini di cancro della pelle in diverse categorie utilizzando un modello che utilizza intelligenza artificiale. 🖼️✨
Carica la tua immagine o usa uno degli esempi elencati qui sotto per vedere i risultati.
**AVVISO⚠️**\n
Questa demo è solo a scopo educativo e informativo. Non è intesa a fornire una diagnosi medica, né deve essere considerata un sostituto di un consulto medico professionale, una diagnosi o un trattamento. Non siamo responsabili per eventuali errori nella classificazione delle immagini di cancro della pelle. Se hai preoccupazioni sulla tua salute, consulta un professionista sanitario.
### About Us
We are researchers in the [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 of the University of Modena and Reggio Emilia.
Some of us are working on **Artificial Intelligence for Medical Imaging** 🧠🧑‍⚕️👩‍⚕️🥼
\n
Siamo dei ricercatori del laboratorio [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 dell' Università di Modena e Reggio Emilia.
Alcuni di noi lavorano sul **Medical Imaging con uso di Intelligenza Artificiale** 🧠🧑‍⚕️👩‍⚕️🥼
### Technical Details 🤓
The architecture used is a pre- trained Vision Transformer (ViT) on the ImageNet21k, with a fine-tuning on the [HAM10k dataset](https://huggingface.co/datasets/marmal88/skin_cancer) and a modified head to accommodate for the classes: Classes: Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma.
The best validation accuracy obtained was 0.9695. However this score is not a good indicator of performance given the class imbalances present in the dataset.
### Credits
Original model trained and uploaded on Hugging Face by user [Anwarkh1](https://huggingface.co/Anwarkh1).
HF Space dapted and updated by [Ettore Candeloro](https://ettorecandeloro.me/)
"""
# Load the model and launch the app with title, description, examples,
demo = gr.load("models/Anwarkh1/Skin_Cancer-Image_Classification", examples=examples, title=title, description=description).launch()