Spaces:
Running
Running
ecandeloro
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -35,6 +35,10 @@ Some of us are working on **Artificial Intelligence for Medical Imaging** 🧠
|
|
35 |
Siamo dei ricercatori del laboratorio [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 dell' Università di Modena e Reggio Emilia.
|
36 |
Alcuni di noi lavorano sul **Medical Imaging con uso di Intelligenza Artificiale** 🧠🧑⚕️👩⚕️🥼
|
37 |
|
|
|
|
|
|
|
|
|
38 |
### Credits
|
39 |
|
40 |
Original model trained and uploaded on Hugging Face by user [Anwarkh1](https://huggingface.co/Anwarkh1).
|
@@ -42,15 +46,6 @@ HF Space dapted and updated by [Ettore Candeloro](https://ettorecandeloro.me/)
|
|
42 |
|
43 |
"""
|
44 |
|
45 |
-
#
|
46 |
-
disclaimer = """
|
47 |
-
****
|
48 |
-
⚠️ *This demo is for educational and informational purposes only. It is **not** intended to provide a medical diagnosis, nor should it be considered a substitute for professional medical advice, diagnosis, or treatment. We are not liable for any misclassification of skin cancer images. If you have concerns about your health, please consult a healthcare professional.*
|
49 |
-
|
50 |
-
**Avviso legale:**
|
51 |
-
⚠️ *Questa demo è solo a scopo educativo e informativo. **Non** è intesa a fornire una diagnosi medica, né deve essere considerata un sostituto di un consulto medico professionale, una diagnosi o un trattamento. Non siamo responsabili per eventuali errori nella classificazione delle immagini di cancro della pelle. Se hai preoccupazioni sulla tua salute, consulta un professionista sanitario.*
|
52 |
-
"""
|
53 |
-
|
54 |
-
# Load the model and launch the app with title, description, examples, and disclaimer
|
55 |
demo = gr.load("models/Anwarkh1/Skin_Cancer-Image_Classification", examples=examples, title=title, description=description).launch()
|
56 |
|
|
|
35 |
Siamo dei ricercatori del laboratorio [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 dell' Università di Modena e Reggio Emilia.
|
36 |
Alcuni di noi lavorano sul **Medical Imaging con uso di Intelligenza Artificiale** 🧠🧑⚕️👩⚕️🥼
|
37 |
|
38 |
+
### Technical Details 🤓
|
39 |
+
The architecture used is a pre- trained Vision Transformer (ViT) on the ImageNet21k, with a fine-tuning on the [HAM10k dataset](https://huggingface.co/datasets/marmal88/skin_cancer) and a modified head to accommodate for the classes: Classes: Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma.
|
40 |
+
The best validation accuracy obtained was 0.9695. However this score is not a good indicator of performance given the class imbalances present in the dataset.
|
41 |
+
|
42 |
### Credits
|
43 |
|
44 |
Original model trained and uploaded on Hugging Face by user [Anwarkh1](https://huggingface.co/Anwarkh1).
|
|
|
46 |
|
47 |
"""
|
48 |
|
49 |
+
# Load the model and launch the app with title, description, examples,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
demo = gr.load("models/Anwarkh1/Skin_Cancer-Image_Classification", examples=examples, title=title, description=description).launch()
|
51 |
|