ecandeloro commited on
Commit
2dea304
·
verified ·
1 Parent(s): 1c2ffbb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -10
app.py CHANGED
@@ -35,6 +35,10 @@ Some of us are working on **Artificial Intelligence for Medical Imaging** 🧠
35
  Siamo dei ricercatori del laboratorio [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 dell' Università di Modena e Reggio Emilia.
36
  Alcuni di noi lavorano sul **Medical Imaging con uso di Intelligenza Artificiale** 🧠🧑‍⚕️👩‍⚕️🥼
37
 
 
 
 
 
38
  ### Credits
39
 
40
  Original model trained and uploaded on Hugging Face by user [Anwarkh1](https://huggingface.co/Anwarkh1).
@@ -42,15 +46,6 @@ HF Space dapted and updated by [Ettore Candeloro](https://ettorecandeloro.me/)
42
 
43
  """
44
 
45
- # Add a disclaimer
46
- disclaimer = """
47
- ****
48
- ⚠️ *This demo is for educational and informational purposes only. It is **not** intended to provide a medical diagnosis, nor should it be considered a substitute for professional medical advice, diagnosis, or treatment. We are not liable for any misclassification of skin cancer images. If you have concerns about your health, please consult a healthcare professional.*
49
-
50
- **Avviso legale:**
51
- ⚠️ *Questa demo è solo a scopo educativo e informativo. **Non** è intesa a fornire una diagnosi medica, né deve essere considerata un sostituto di un consulto medico professionale, una diagnosi o un trattamento. Non siamo responsabili per eventuali errori nella classificazione delle immagini di cancro della pelle. Se hai preoccupazioni sulla tua salute, consulta un professionista sanitario.*
52
- """
53
-
54
- # Load the model and launch the app with title, description, examples, and disclaimer
55
  demo = gr.load("models/Anwarkh1/Skin_Cancer-Image_Classification", examples=examples, title=title, description=description).launch()
56
 
 
35
  Siamo dei ricercatori del laboratorio [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 dell' Università di Modena e Reggio Emilia.
36
  Alcuni di noi lavorano sul **Medical Imaging con uso di Intelligenza Artificiale** 🧠🧑‍⚕️👩‍⚕️🥼
37
 
38
+ ### Technical Details 🤓
39
+ The architecture used is a pre- trained Vision Transformer (ViT) on the ImageNet21k, with a fine-tuning on the [HAM10k dataset](https://huggingface.co/datasets/marmal88/skin_cancer) and a modified head to accommodate for the classes: Classes: Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma.
40
+ The best validation accuracy obtained was 0.9695. However this score is not a good indicator of performance given the class imbalances present in the dataset.
41
+
42
  ### Credits
43
 
44
  Original model trained and uploaded on Hugging Face by user [Anwarkh1](https://huggingface.co/Anwarkh1).
 
46
 
47
  """
48
 
49
+ # Load the model and launch the app with title, description, examples,
 
 
 
 
 
 
 
 
 
50
  demo = gr.load("models/Anwarkh1/Skin_Cancer-Image_Classification", examples=examples, title=title, description=description).launch()
51