Spaces:
Running
Running
File size: 3,086 Bytes
a7e06fa 09f3d9e 218ebce ccee4a8 de7768f 1c20ae1 ccee4a8 09f3d9e 39ba5de fc643ca f3328f9 fc643ca 0f62134 f3328f9 0f62134 f3328f9 0f62134 f3328f9 c05ca3a f3328f9 c05ca3a 0f62134 f3328f9 0f62134 2dea304 0f62134 a712342 0f62134 fc643ca 09f3d9e 2dea304 7a3edc0 fc643ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
examples = [
["Nevus_NCI.jpg"],
["melanoma_example.jpg"],
["ISIC_0115851.JPG"],
["mel_contact_polarized.JPG"],
["lesion2.jpg"],
["lesion3.jpg"],
# Add more images as needed
]
# Title and description
title = "🔎 Skin Cancer Image Classification - Classificazione di Tumori della Pelle"
description = """
### Description
This app classifies skin cancer images into different categories using an AI model. 🖼️✨
Upload your own image or use one of the examples to see the results.
**DISCLAIMER⚠️**\n
**This demo is for educational and informational purposes only**.It is not intended to provide a medical diagnosis, nor should it be considered a substitute for professional medical advice, diagnosis, or treatment. We are not liable for any misclassification of skin cancer images. If you have concerns about your health, please consult a healthcare professional.
### Descrizione
Questa app classifica le immagini di cancro della pelle in diverse categorie utilizzando un modello che utilizza intelligenza artificiale. 🖼️✨
Carica la tua immagine o usa uno degli esempi elencati qui sotto per vedere i risultati.
**AVVISO⚠️**\n
Questa demo è solo a scopo educativo e informativo. Non è intesa a fornire una diagnosi medica, né deve essere considerata un sostituto di un consulto medico professionale, una diagnosi o un trattamento. Non siamo responsabili per eventuali errori nella classificazione delle immagini di cancro della pelle. Se hai preoccupazioni sulla tua salute, consulta un professionista sanitario.
### About Us
We are researchers in the [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 of the University of Modena and Reggio Emilia.
Some of us are working on **Artificial Intelligence for Medical Imaging** 🧠🧑⚕️👩⚕️🥼
\n
Siamo dei ricercatori del laboratorio [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 dell' Università di Modena e Reggio Emilia.
Alcuni di noi lavorano sul **Medical Imaging con uso di Intelligenza Artificiale** 🧠🧑⚕️👩⚕️🥼
### Technical Details 🤓
The architecture used is a pre- trained Vision Transformer (ViT) on the ImageNet21k, with a fine-tuning on the [HAM10k dataset](https://huggingface.co/datasets/marmal88/skin_cancer) and a modified head to accommodate for the classes: Classes: Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma.
The best validation accuracy obtained was 0.9695. However this score is not a good indicator of performance given the class imbalances present in the dataset.
### Credits
Original model trained and uploaded on Hugging Face by user [Anwarkh1](https://huggingface.co/Anwarkh1).
HF Space dapted and updated by [Ettore Candeloro](https://ettorecandeloro.me/)
"""
# Load the model and launch the app with title, description, examples,
demo = gr.load("models/Anwarkh1/Skin_Cancer-Image_Classification", examples=examples, title=title, description=description).launch()
|