File size: 3,086 Bytes
a7e06fa
 
09f3d9e
 
218ebce
ccee4a8
de7768f
1c20ae1
ccee4a8
09f3d9e
 
39ba5de
fc643ca
f3328f9
fc643ca
0f62134
 
 
 
f3328f9
0f62134
 
f3328f9
0f62134
f3328f9
c05ca3a
f3328f9
c05ca3a
 
0f62134
 
 
 
f3328f9
 
 
0f62134
2dea304
 
 
 
0f62134
 
 
a712342
0f62134
fc643ca
09f3d9e
2dea304
7a3edc0
fc643ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import gradio as gr

examples = [
    ["Nevus_NCI.jpg"],
    ["melanoma_example.jpg"],
    ["ISIC_0115851.JPG"],
    ["mel_contact_polarized.JPG"],
    ["lesion2.jpg"],
    ["lesion3.jpg"],
    # Add more images as needed
]

# Title and description
title = "🔎 Skin Cancer Image Classification - Classificazione di Tumori della Pelle"
description = """
### Description
This app classifies skin cancer images into different categories using an AI model. 🖼️✨
Upload your own image or use one of the examples to see the results.

**DISCLAIMER⚠️**\n
**This demo is for educational and informational purposes only**.It is not intended to provide a medical diagnosis, nor should it be considered a substitute for professional medical advice, diagnosis, or treatment. We are not liable for any misclassification of skin cancer images. If you have concerns about your health, please consult a healthcare professional.

### Descrizione
Questa app classifica le immagini di cancro della pelle in diverse categorie utilizzando un modello che utilizza intelligenza artificiale. 🖼️✨  
Carica la tua immagine o usa uno degli esempi elencati qui sotto per vedere i risultati.

**AVVISO⚠️**\n
Questa demo è solo a scopo educativo e informativo. Non è intesa a fornire una diagnosi medica, né deve essere considerata un sostituto di un consulto medico professionale, una diagnosi o un trattamento. Non siamo responsabili per eventuali errori nella classificazione delle immagini di cancro della pelle. Se hai preoccupazioni sulla tua salute, consulta un professionista sanitario.

### About Us

We are researchers in the [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 of the University of Modena and Reggio Emilia.
Some of us are working on **Artificial Intelligence for Medical Imaging** 🧠🧑‍⚕️👩‍⚕️🥼
\n
Siamo dei ricercatori del laboratorio [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 dell' Università di Modena e Reggio Emilia.
Alcuni di noi lavorano sul **Medical Imaging con uso di Intelligenza Artificiale** 🧠🧑‍⚕️👩‍⚕️🥼

### Technical Details 🤓
The architecture used is a pre- trained Vision Transformer (ViT) on the ImageNet21k, with a fine-tuning on the [HAM10k dataset](https://huggingface.co/datasets/marmal88/skin_cancer) and a modified head to accommodate for the classes: Classes: Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma.
The best validation accuracy obtained was 0.9695. However this score is not a good indicator of performance given the class imbalances present in the dataset.

### Credits

Original model trained and uploaded on Hugging Face by user [Anwarkh1](https://huggingface.co/Anwarkh1).
HF Space dapted and updated by [Ettore Candeloro](https://ettorecandeloro.me/)

"""

# Load the model and launch the app with title, description, examples,
demo = gr.load("models/Anwarkh1/Skin_Cancer-Image_Classification", examples=examples, title=title, description=description).launch()