phase-hunter / app.py
crimeacs's picture
Removed 3D velocity, because I broke it somehow
d4d4582
# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.
import gradio as gr
import numpy as np
import pandas as pd
from phasehunter.data_preparation import prepare_waveform
import torch
import io
from scipy.stats import gaussian_kde
from scipy.signal import resample
from scipy.interpolate import interp1d
from bmi_topography import Topography
import earthpy.spatial as es
import obspy
from obspy.clients.fdsn import Client
from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException
from obspy.geodetics.base import locations2degrees
from obspy.taup import TauPyModel
from obspy.taup.helper_classes import SlownessModelError
from obspy.clients.fdsn.header import URL_MAPPINGS
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from mpl_toolkits.axes_grid1 import ImageGrid
from glob import glob
import numpy as np
from matplotlib import colors, cm
from scipy.interpolate import griddata
def resample_waveform(waveform, original_freq, target_freq):
"""
Resample a waveform from original frequency to target frequency using SciPy's resample function.
Args:
waveform (numpy.ndarray): The input waveform as a 1D array.
original_freq (float): The original sampling frequency of the waveform.
target_freq (float): The target sampling frequency of the waveform.
Returns:
resampled_waveform (numpy.ndarray): The resampled waveform as a 1D array.
"""
# Calculate the resampling ratio
resampling_ratio = target_freq / original_freq
# Calculate the new length of the resampled waveform
resampled_length = int(waveform.shape[-1] * resampling_ratio)
# Resample the waveform using SciPy's resample function
resampled_waveform = resample(waveform, resampled_length, axis=-1)
return resampled_waveform
def sort_channels_to_ZNE(waveform, channels):
# Input:
# waveform: a 2D numpy array with shape (3, n), where n is the number of samples
# channels: a list or tuple of 3 strings representing the channel order, e.g. ('N', 'Z', 'E')
channels = list(channels)
if len(channels) != 3 or set(channels) != {'Z', 'N', 'E'}:
raise ValueError("Invalid channel input. It should be a permutation of 'Z', 'N', and 'E'.")
# Find the indices of the Z, N, and E channels
z_index = channels.index('Z')
n_index = channels.index('N')
e_index = channels.index('E')
print(z_index, n_index, e_index)
# Sort the channels to ZNE
sorted_waveform = waveform[[z_index, n_index, e_index], :]
return sorted_waveform
def make_prediction(waveform, sampling_rate, order):
waveform = np.load(waveform)
print('Loaded', waveform.shape)
if len(waveform.shape) == 1:
waveform = waveform.reshape(1, waveform.shape[0])
elif waveform.shape[0] == 3:
waveform = sort_channels_to_ZNE(waveform, order)
if sampling_rate != 100:
waveform = resample_waveform(waveform, sampling_rate, 100)
print('Resampled', waveform.shape)
orig_waveform = waveform[:, :6000].copy()
processed_input = prepare_waveform(waveform)
# Make prediction
with torch.inference_mode():
output = model(processed_input)
p_phase = output[:, 0]
s_phase = output[:, 1]
return processed_input, p_phase, s_phase, orig_waveform
def mark_phases(waveform, uploaded_file, p_thres, s_thres, sampling_rate, order):
if uploaded_file is not None:
waveform = uploaded_file.name
processed_input, p_phase, s_phase, orig_waveform = make_prediction(waveform, sampling_rate, order)
# Create a plot of the waveform with the phases marked
if sum(processed_input[0][2] == 0): #if input is 1C
fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)
ax[0].plot(orig_waveform[0], color='black', lw=1)
ax[0].set_ylabel('Norm. Ampl.')
else: #if input is 3C
fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)
ax[0].plot(orig_waveform[0], color='black', lw=1)
ax[1].plot(orig_waveform[1], color='black', lw=1)
ax[2].plot(orig_waveform[2], color='black', lw=1)
ax[0].set_ylabel('Z')
ax[1].set_ylabel('N')
ax[2].set_ylabel('E')
do_we_have_p = (p_phase.std().item()*60 < p_thres)
if do_we_have_p:
p_phase_plot = p_phase*processed_input.shape[-1]
p_kde = gaussian_kde(p_phase_plot)
p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )
ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')
else:
ax[-1].text(0.5, 0.75, 'No P phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes)
do_we_have_s = (s_phase.std().item()*60 < s_thres)
if do_we_have_s:
s_phase_plot = s_phase*processed_input.shape[-1]
s_kde = gaussian_kde(s_phase_plot)
s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )
ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')
for a in ax:
a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P', alpha=do_we_have_p)
a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S', alpha=do_we_have_s)
else:
ax[-1].text(0.5, 0.25, 'No S phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes)
ax[-1].set_xlabel('Time, samples')
ax[-1].set_ylabel('Uncert., samples')
ax[-1].legend()
plt.subplots_adjust(hspace=0., wspace=0.)
# Convert the plot to an image and return it
fig.canvas.draw()
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
def bin_distances(distances, bin_size=10):
# Bin the distances into groups of `bin_size` kilometers
binned_distances = {}
for i, distance in enumerate(distances):
bin_index = distance // bin_size
if bin_index not in binned_distances:
binned_distances[bin_index] = (distance, i)
elif i < binned_distances[bin_index][1]:
binned_distances[bin_index] = (distance, i)
# Select the first distance in each bin and its index
first_distances = []
for bin_index in binned_distances:
first_distance, first_distance_index = binned_distances[bin_index]
first_distances.append(first_distance_index)
return first_distances
def variance_coefficient(residuals):
# calculate the variance of the residuals
var = residuals.var()
# scale the variance to a coefficient between 0 and 1
coeff = 1 - (var / (residuals.max() - residuals.min()))
return coeff
def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms, conf_thres_P, conf_thres_S):
distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []
taup_model = TauPyModel(model=velocity_model)
client = Client(client_name)
window = radius_km / 111.2
max_waveforms = int(max_waveforms)
assert eq_lat - window > -90 and eq_lat + window < 90, "Latitude out of bounds"
assert eq_lon - window > -180 and eq_lon + window < 180, "Longitude out of bounds"
starttime = obspy.UTCDateTime(timestamp)
endtime = starttime + 120
try:
print('Starting to download inventory')
inv = client.get_stations(network="*", station="*", location="*", channel="*H*",
starttime=starttime, endtime=endtime,
minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),
minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window),
level='station')
print('Finished downloading inventory')
except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
fig, ax = plt.subplots()
ax.text(0.5,0.5,'Something is wrong with the data provider, try another')
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
waveforms = []
cached_waveforms = glob("data/cached/*.mseed")
for network in inv:
if network.code == 'SY':
continue
for station in network:
print(f"Processing {network.code}.{station.code}...")
distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)
arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km,
distance_in_degree=distance,
phase_list=["P", "S"])
if len(arrivals) > 0:
starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15
endtime = starttime + 60
try:
filename=f'{network.code}_{station.code}_{starttime}'
if f"data/cached/{filename}.mseed" not in cached_waveforms:
print(f'Downloading waveform for {filename}')
waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*",
starttime=starttime, endtime=endtime)
waveform.write(f"data/cached/{network.code}_{station.code}_{starttime}.mseed", format="MSEED")
print('Finished downloading and caching waveform')
else:
print('Reading cached waveform')
waveform = obspy.read(f"data/cached/{network.code}_{station.code}_{starttime}.mseed")
except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
print(f'Skipping {network.code}_{station.code}_{starttime}')
continue
waveform = waveform.select(channel="H[BH][ZNE]")
waveform = waveform.merge(fill_value=0)
waveform = waveform[:3].sort(keys=['channel'], reverse=True)
len_check = [len(x.data) for x in waveform]
if len(set(len_check)) > 1:
continue
if len(waveform) == 3:
try:
waveform = prepare_waveform(np.stack([x.data for x in waveform]))
distances.append(distance)
t0s.append(starttime)
st_lats.append(station.latitude)
st_lons.append(station.longitude)
waveforms.append(waveform)
names.append(f"{network.code}.{station.code}")
print(f"Added {network.code}.{station.code} to the list of waveforms")
except:
continue
# If there are no waveforms, return an empty plot
if len(waveforms) == 0:
print('No waveforms found')
fig, ax = plt.subplots()
# prints "No waveforms found" on the plot aligned at center and vertically
ax.text(0.5,0.5,'No waveforms found', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
output_picks = pd.DataFrame()
output_picks.to_csv('data/picks.csv', index=False)
output_csv = 'data/picks.csv'
return image, output_picks, output_csv
first_distances = bin_distances(distances, bin_size=10/111.2)
# Edge case when there are way too many waveforms to process
selection_indexes = np.random.choice(first_distances,
np.min([len(first_distances), max_waveforms]),
replace=False)
waveforms = np.array(waveforms)[selection_indexes]
distances = np.array(distances)[selection_indexes]
t0s = np.array(t0s)[selection_indexes]
st_lats = np.array(st_lats)[selection_indexes]
st_lons = np.array(st_lons)[selection_indexes]
names = np.array(names)[selection_indexes]
waveforms = [torch.tensor(waveform) for waveform in waveforms]
print('Starting to run predictions')
with torch.no_grad():
waveforms_torch = torch.vstack(waveforms)
output = model(waveforms_torch)
p_phases = output[:, 0]
s_phases = output[:, 1]
p_phases = p_phases.reshape(len(waveforms),-1)
s_phases = s_phases.reshape(len(waveforms),-1)
# Max confidence - min variance
p_max_confidence = p_phases.std(axis=-1).min()
s_max_confidence = s_phases.std(axis=-1).min()
print(f"Starting plotting {len(waveforms)} waveforms")
fig, ax = plt.subplots(ncols=3, figsize=(10, 3))
# Plot topography
print('Fetching topography')
params = Topography.DEFAULT.copy()
extra_window = 0.5
params["south"] = np.min([st_lats.min(), eq_lat])-extra_window
params["north"] = np.max([st_lats.max(), eq_lat])+extra_window
params["west"] = np.min([st_lons.min(), eq_lon])-extra_window
params["east"] = np.max([st_lons.max(), eq_lon])+extra_window
topo_map = Topography(**params)
topo_map.fetch()
topo_map.load()
print('Plotting topo')
hillshade = es.hillshade(topo_map.da[0], altitude=10)
topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False)
topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False)
ax[1].imshow(hillshade, cmap="Greys", alpha=0.5)
output_picks = pd.DataFrame({'station_name' : [],
'st_lat' : [], 'st_lon' : [],
'starttime' : [],
'p_phase, s' : [], 'p_uncertainty, s' : [],
's_phase, s' : [], 's_uncertainty, s' : [],
'velocity_p, km/s' : [], 'velocity_s, km/s' : []})
for i in range(len(waveforms)):
print(f"Plotting waveform {i+1}/{len(waveforms)}")
current_P = p_phases[i]
current_S = s_phases[i]
x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]
x = mdates.date2num(x)
# Normalize confidence for the plot
p_conf = 1/(current_P.std()/p_max_confidence).item()
s_conf = 1/(current_S.std()/s_max_confidence).item()
delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp
ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)
if (current_P.std().item()*60 < conf_thres_P) or (current_S.std().item()*60 < conf_thres_S):
ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')
ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')
velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item()
velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item()
# Generate an array from st_lat to eq_lat and from st_lon to eq_lon
x = np.linspace(st_lons[i], eq_lon, 50)
y = np.linspace(st_lats[i], eq_lat, 50)
# Plot the array
ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.1, vmin=0, vmax=8)
ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.1, vmin=0, vmax=8)
else:
velocity_p = np.nan
velocity_s = np.nan
ax[0].set_ylabel('Z')
print(f"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}")
output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]],
'st_lat' : [st_lats[i]], 'st_lon' : [st_lons[i]],
'starttime' : [str(t0s[i])],
'p_phase, s' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty, s' : [current_P.std().item()*60],
's_phase, s' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty, s' : [current_S.std().item()*60],
'velocity_p, km/s' : [velocity_p], 'velocity_s, km/s' : [velocity_s]}))
# Add legend
ax[0].scatter(None, None, color='r', marker='|', label='P')
ax[0].scatter(None, None, color='b', marker='|', label='S')
ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))
ax[0].legend()
print('Plotting stations')
for i in range(1,3):
ax[i].scatter(st_lons, st_lats, color='b', label='Stations')
ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake')
ax[i].set_aspect('equal')
ax[i].set_xticklabels(ax[i].get_xticks(), rotation = 50)
fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,
wspace=0.02, hspace=0.02)
cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])
cbar = fig.colorbar(ax[2].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), cax=cb_ax)
cbar.set_label('Velocity (km/s)')
ax[1].set_title('P Velocity')
ax[2].set_title('S Velocity')
for a in ax:
a.tick_params(axis='both', which='major', labelsize=8)
plt.subplots_adjust(hspace=0., wspace=0.5)
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
output_csv = f'data/velocity/{eq_lat}_{eq_lon}_{source_depth_km}_{timestamp}_{len(waveforms)}.csv'
output_picks.to_csv(output_csv, index=False)
return image, output_picks, output_csv
def interpolate_vel_model(velocity_model, initial_velocity, lat_values, lon_values, depth_values, n_lat, n_lon, n_depth):
# Create a mask for points with the initial velocity
initial_velocity_mask = (velocity_model == initial_velocity)
# Find the indices of points with non-initial velocities
non_initial_velocity_indices = np.argwhere(~initial_velocity_mask)
# Extract the coordinates and corresponding velocities of the known points
known_points = np.column_stack([lat_values[non_initial_velocity_indices[:, 0]],
lon_values[non_initial_velocity_indices[:, 1]],
depth_values[non_initial_velocity_indices[:, 2]]])
# Find the maximum depth in the known_points
max_known_depth = np.max(known_points[:, 2])
known_velocities = velocity_model[~initial_velocity_mask]
# Create a grid of points for the entire volume
grid_points = np.array(np.meshgrid(lat_values, lon_values, depth_values, indexing='ij')).reshape(3, -1).T
# Create a mask for grid points that are deeper than the maximum known depth
depth_mask = grid_points[:, 2] <= max_known_depth
# Interpolate the velocities at the grid points
interpolated_velocities = griddata(known_points, known_velocities, grid_points[depth_mask], method='linear')
# Fill nan values with the nearest known velocities
interpolated_velocities_filled = griddata(known_points, known_velocities, grid_points[depth_mask], method='nearest')
interpolated_velocities[np.isnan(interpolated_velocities)] = interpolated_velocities_filled[np.isnan(interpolated_velocities)]
# Initialize an array with the same length as grid_points and fill it with nan values
interpolated_velocities_with_depth_limit = np.full(grid_points.shape[0], np.nan)
# Update the array with the interpolated velocities for the masked grid points
interpolated_velocities_with_depth_limit[depth_mask] = interpolated_velocities
# Reshape the interpolated velocities to match the shape of the velocity_model
interpolated_velocity_model = interpolated_velocities_with_depth_limit.reshape(n_lat, n_lon, n_depth)
return interpolated_velocity_model
# Function to find the closest index for a given value in an array
def find_closest_index(array, value):
return np.argmin(np.abs(array - value))
# FIX AFTER CONFERENCE
# def compute_velocity_model(azimuth, elevation, interpolate, n_lat, n_lon, n_depth):
# filename = list(output_csv.temp_files)[0]
# df = pd.read_csv(filename)
# filename = filename.split('/')[-1]
# # Current EQ location
# eq_lat = float(filename.split("_")[0])
# eq_lon = float(filename.split("_")[1])
# eq_depth = float(filename.split("_")[2])
# # Define the region of interest (latitude, longitude, and depth ranges)
# lat_range = (np.min([df.st_lat.min(), eq_lat]), np.max([df.st_lat.max(), eq_lat]))
# lon_range = (np.min([df.st_lon.min(), eq_lon]), np.max([df.st_lon.max(), eq_lon]))
# depth_range = (0, 50)
# # Define the number of nodes in each dimension
# num_points = 100
# taup_model = TauPyModel(model='1066a')
# # Create the grid
# lat_values = np.linspace(lat_range[0], lat_range[1], n_lat)
# lon_values = np.linspace(lon_range[0], lon_range[1], n_lon)
# depth_values = np.linspace(depth_range[0], depth_range[1], n_depth)
# # Initialize the velocity model with constant values
# initial_velocity = 0 # km/s, this can be P-wave or S-wave velocity
# velocity_model = np.full((n_lat, n_lon, n_depth), initial_velocity, dtype=float)
# # Loop through the stations and update the velocity model
# for i in range(len(df)):
# if ~np.isnan(df['velocity_p, km/s'].iloc[i]):
# ray_path = taup_model.get_ray_paths_geo(source_depth_in_km=eq_depth,
# source_latitude_in_deg=eq_lat,
# source_longitude_in_deg=eq_lon,
# receiver_latitude_in_deg=df.st_lat.iloc[i],
# receiver_longitude_in_deg=df.st_lon.iloc[i],
# phase_list=['P', 'S'])
# # THERE IS A PROBLEM WITH THE RAY PATHS. APPARENTLY LAT AND LON DON'T EXIST (HOW DID IT WORK BEFORE?)
# print(ray_path[0].path)
# # Create the interpolator objects for latitude, longitude, and depth
# interp_latitude = interp1d(np.linspace(0, ray_path[0].path['lat'].max(), len(ray_path[0].path['lat'])), ray_path[0].path['lat'])
# interp_longitude = interp1d(np.linspace(0, ray_path[0].path['lon'].max(), len(ray_path[0].path['lon'])), ray_path[0].path['lon'])
# interp_depth = interp1d(np.linspace(0, ray_path[0].path['depth'].max(), len(ray_path[0].path['depth'])), ray_path[0].path['depth'])
# # Resample the ray path to N points
# lat_values_interp = interp_latitude(np.linspace(0, ray_path[0].path['lat'].max(), num_points))
# lon_values_interp = interp_longitude(np.linspace(0, ray_path[0].path['lon'].max(), num_points))
# depth_values_interp = interp_depth(np.linspace(0, ray_path[0].path['depth'].max(), num_points))
# # Loop through the interpolated coordinates and update the grid cells with the average P-wave velocity
# for lat, lon, depth in zip(lat_values_interp, lon_values_interp, depth_values_interp):
# lat_index = find_closest_index(lat_values, lat)
# lon_index = find_closest_index(lon_values, lon)
# depth_index = find_closest_index(depth_values, depth)
# if velocity_model[lat_index, lon_index, depth_index] == initial_velocity:
# velocity_model[lat_index, lon_index, depth_index] = df['velocity_p, km/s'].iloc[i]
# else:
# velocity_model[lat_index, lon_index, depth_index] = (velocity_model[lat_index, lon_index, depth_index] +
# df['velocity_p, km/s'].iloc[i]) / 2
# # Create the figure and axis
# fig = plt.figure(figsize=(8, 8))
# ax = fig.add_subplot(111, projection='3d')
# # Set the plot limits
# ax.set_xlim3d(lat_range[0], lat_range[1])
# ax.set_ylim3d(lon_range[0], lon_range[1])
# ax.set_zlim3d(depth_range[1], depth_range[0])
# ax.set_xlabel('Latitude')
# ax.set_ylabel('Longitude')
# ax.set_zlabel('Depth (km)')
# ax.set_title('Velocity Model')
# # Create the meshgrid
# x, y, z = np.meshgrid(
# np.linspace(lat_range[0], lat_range[1], velocity_model.shape[0]+1),
# np.linspace(lon_range[0], lon_range[1], velocity_model.shape[1]+1),
# np.linspace(depth_range[0], depth_range[1], velocity_model.shape[2]+1),
# indexing='ij'
# )
# # Create the color array
# norm = plt.Normalize(vmin=2, vmax=8)
# colors_vel = plt.cm.plasma(norm(velocity_model))
# # Plot the voxels
# if interpolate:
# interpolated_velocity_model = interpolate_vel_model(velocity_model, initial_velocity, lat_values, lon_values, depth_values, n_lat, n_lon, n_depth)
# colors_interp = plt.cm.plasma(norm(interpolated_velocity_model))
# ax.voxels(x, y, z, interpolated_velocity_model > 0, facecolors=colors_interp, alpha=0.5, edgecolor='k')
# ax.voxels(x, y, z, velocity_model > 0, facecolors=colors_vel, alpha=1, edgecolor='black')
# # Set the view angle
# ax.view_init(elev=elevation, azim=azimuth)
# m = cm.ScalarMappable(cmap=plt.cm.plasma, norm=norm)
# m.set_array([])
# plt.colorbar(m)
# # Show the plot
# fig.canvas.draw();
# image = np.array(fig.canvas.renderer.buffer_rgba())
# plt.close(fig)
# return image
# model = torch.jit.load("model.pt")
model = torch.jit.load("model.pt")
model.eval()
with gr.Blocks() as demo:
gr.HTML("""
<div style="padding: 20px; border-radius: 10px;">
<h1 style="font-size: 30px; text-align: center; margin-bottom: 20px;">PhaseHunter <span style="animation: arrow-anim 10s linear infinite; display: inline-block; transform: rotate(45deg) translateX(-20px);">🏹</span>
<style>
@keyframes arrow-anim {
0% { transform: translateX(-20px); }
50% { transform: translateX(20px); }
100% { transform: translateX(-20px); }
}
</style></h1>
<p style="font-size: 16px; margin-bottom: 20px;">Detect <span style="background-image: linear-gradient(to right, #ED213A, #93291E);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;">P</span> and <span style="background-image: linear-gradient(to right, #00B4DB, #0083B0);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;">S</span> seismic phases with <span style="background-image: linear-gradient(to right, #f12711, #f5af19);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;">uncertainty</span></p>
<ul style="font-size: 16px; margin-bottom: 40px;">
<li>Tab 1: Detect seismic phases by selecting a sample waveform or uploading your own waveform in <code>.npy</code> format.</li>
<li>Tab 2: Select an earthquake from the global earthquake catalogue and PhaseHunter will analyze seismic stations in the given radius.</li>
<li>Waveforms should be sampled at 100 samples/sec and have 3 (Z, N, E) or 1 (Z) channels. PhaseHunter analyzes the first 6000 samples of your file.</li>
</ul>
<p style="font-size: 16px; margin-bottom: 20px;">Please contact me at [email protected] with questions and feedback</p>
</div>
""")
with gr.Tab("Try on a single station"):
with gr.Row():
# Define the input and output types for Gradio
inputs = gr.Dropdown(
["data/sample/sample_0.npy",
"data/sample/sample_1.npy",
"data/sample/sample_2.npy"],
label="Sample waveform",
info="Select one of the samples",
value = "data/sample/sample_0.npy"
)
with gr.Column(scale=1):
P_thres_inputs = gr.Slider(minimum=0.01,
maximum=1,
value=0.1,
label="P uncertainty threshold (s)",
step=0.01,
info="Acceptable uncertainty for P picks expressed in std() seconds",
interactive=True,
)
S_thres_inputs = gr.Slider(minimum=0.01,
maximum=1,
value=0.2,
label="S uncertainty threshold (s)",
step=0.01,
info="Acceptable uncertainty for S picks expressed in std() seconds",
interactive=True,
)
with gr.Column(scale=1):
upload = gr.File(label="Upload your waveform")
with gr.Row():
sampling_rate_inputs = gr.Slider(minimum=10,
maximum=1000,
value=100,
label="Samlping rate, Hz",
step=10,
info="Sampling rate of the waveform",
interactive=True,
)
order_input = gr.Text(value='ZNE',
label='Channel order',
info='Order of the channels in the waveform file (e.g. ZNE)')
button = gr.Button("Predict phases")
outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)
button.click(mark_phases, inputs=[inputs, upload,
P_thres_inputs, S_thres_inputs,
sampling_rate_inputs, order_input],
outputs=outputs)
with gr.Tab("Select earthquake from catalogue"):
gr.HTML("""
<div style="padding: 20px; border-radius: 10px; font-size: 16px;">
<p style="font-weight: bold; font-size: 24px; margin-bottom: 20px;">Using PhaseHunter to Analyze Seismic Waveforms</p>
<p>Select an earthquake from the global earthquake catalogue (e.g. <a href="https://earthquake.usgs.gov/earthquakes/map">USGS</a>) and the app will download the waveform from the FDSN client of your choice. The app will use a velocity model of your choice to select appropriate time windows for each station within a specified radius of the earthquake.</p>
<p>The app will then analyze the waveforms and mark the detected phases on the waveform. Pick data for each waveform is reported in seconds from the start of the waveform.</p>
<p>Velocities are derived from distance and travel time determined by PhaseHunter picks (<span style="font-style: italic;">v = distance/predicted_pick_time</span>). The background of the velocity plot is colored by DEM.</p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
client_inputs = gr.Dropdown(
choices = list(URL_MAPPINGS.keys()),
label="FDSN Client",
info="Select one of the available FDSN clients",
value = "IRIS",
interactive=True
)
velocity_inputs = gr.Dropdown(
choices = ['1066a', '1066b', 'ak135',
'ak135f', 'herrin', 'iasp91',
'jb', 'prem', 'pwdk'],
label="1D velocity model",
info="Velocity model for station selection",
value = "1066a",
interactive=True
)
with gr.Column(scale=2):
timestamp_inputs = gr.Textbox(value='2019-07-04T17:33:49-00',
placeholder='YYYY-MM-DDTHH:MM:SS-TZ',
label="Timestamp",
info="Timestamp of the earthquake",
max_lines=1,
interactive=True)
source_depth_inputs = gr.Number(value=10,
label="Source depth (km)",
info="Depth of the earthquake",
interactive=True)
with gr.Column(scale=2):
eq_lat_inputs = gr.Number(value=35.766,
label="Latitude",
info="Latitude of the earthquake",
interactive=True)
eq_lon_inputs = gr.Number(value=-117.605,
label="Longitude",
info="Longitude of the earthquake",
interactive=True)
with gr.Column(scale=2):
radius_inputs = gr.Slider(minimum=1,
maximum=200,
value=50,
label="Radius (km)",
step=10,
info="""Select the radius around the earthquake to download data from.\n
Note that the larger the radius, the longer the app will take to run.""",
interactive=True)
max_waveforms_inputs = gr.Slider(minimum=1,
maximum=100,
value=10,
label="Max waveforms per section",
step=1,
info="Maximum number of waveforms to show per section\n (to avoid long prediction times)",
interactive=True,
)
with gr.Column(scale=2):
P_thres_inputs = gr.Slider(minimum=0.01,
maximum=1,
value=0.1,
label="P uncertainty threshold, s",
step=0.01,
info="Acceptable uncertainty for P picks expressed in std() seconds",
interactive=True,
)
S_thres_inputs = gr.Slider(minimum=0.01,
maximum=1,
value=0.2,
label="S uncertainty threshold, s",
step=0.01,
info="Acceptable uncertainty for S picks expressed in std() seconds",
interactive=True,
)
button_phases = gr.Button("Predict phases")
output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)
# with gr.Row():
# with gr.Column(scale=2):
# azimuth_input = gr.Slider(minimum=-180, maximum=180, value=0, step=5, label="Azimuth", interactive=True)
# elevation_input = gr.Slider(minimum=-90, maximum=90, value=30, step=5, label="Elevation", interactive=True)
# with gr.Row():
# interpolate_input = gr.Checkbox(label="Interpolate", info="Interpolate velocity model")
# n_lat_input = gr.Slider(minimum=5, maximum=100, value=50, step=5, label="N lat", info='Number of Lat grid points', interactive=True)
# n_lon_input = gr.Slider(minimum=5, maximum=100, value=50, step=5, label="N lon", info='Number of Lon grid points', interactive=True)
# n_depth_input = gr.Slider(minimum=5, maximum=100, value=50, step=5, label="N depth", info='Number of Depth grid points', interactive=True)
# button = gr.Button("Look at 3D Velocities")
# outputs_vel_model = gr.Image(label="3D Velocity Model")
# button.click(compute_velocity_model,
# inputs=[azimuth_input, elevation_input,
# interpolate_input, n_lat_input,
# n_lon_input, n_depth_input],
# outputs=[outputs_vel_model])
with gr.Row():
output_picks = gr.Dataframe(label='Pick data',
type='pandas',
interactive=False)
output_csv = gr.File(label="Output File", file_types=[".csv"])
button_phases.click(predict_on_section,
inputs=[client_inputs, timestamp_inputs,
eq_lat_inputs, eq_lon_inputs,
radius_inputs, source_depth_inputs,
velocity_inputs, max_waveforms_inputs,
P_thres_inputs, S_thres_inputs],
outputs=[output_image, output_picks, output_csv])
demo.launch()