# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output. import gradio as gr import numpy as np import pandas as pd from phasehunter.data_preparation import prepare_waveform import torch import io from scipy.stats import gaussian_kde from scipy.signal import resample from scipy.interpolate import interp1d from bmi_topography import Topography import earthpy.spatial as es import obspy from obspy.clients.fdsn import Client from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException from obspy.geodetics.base import locations2degrees from obspy.taup import TauPyModel from obspy.taup.helper_classes import SlownessModelError from obspy.clients.fdsn.header import URL_MAPPINGS import matplotlib.pyplot as plt import matplotlib.dates as mdates from mpl_toolkits.axes_grid1 import ImageGrid from glob import glob import numpy as np from matplotlib import colors, cm from scipy.interpolate import griddata def resample_waveform(waveform, original_freq, target_freq): """ Resample a waveform from original frequency to target frequency using SciPy's resample function. Args: waveform (numpy.ndarray): The input waveform as a 1D array. original_freq (float): The original sampling frequency of the waveform. target_freq (float): The target sampling frequency of the waveform. Returns: resampled_waveform (numpy.ndarray): The resampled waveform as a 1D array. """ # Calculate the resampling ratio resampling_ratio = target_freq / original_freq # Calculate the new length of the resampled waveform resampled_length = int(waveform.shape[-1] * resampling_ratio) # Resample the waveform using SciPy's resample function resampled_waveform = resample(waveform, resampled_length, axis=-1) return resampled_waveform def sort_channels_to_ZNE(waveform, channels): # Input: # waveform: a 2D numpy array with shape (3, n), where n is the number of samples # channels: a list or tuple of 3 strings representing the channel order, e.g. ('N', 'Z', 'E') channels = list(channels) if len(channels) != 3 or set(channels) != {'Z', 'N', 'E'}: raise ValueError("Invalid channel input. It should be a permutation of 'Z', 'N', and 'E'.") # Find the indices of the Z, N, and E channels z_index = channels.index('Z') n_index = channels.index('N') e_index = channels.index('E') print(z_index, n_index, e_index) # Sort the channels to ZNE sorted_waveform = waveform[[z_index, n_index, e_index], :] return sorted_waveform def make_prediction(waveform, sampling_rate, order): waveform = np.load(waveform) print('Loaded', waveform.shape) if len(waveform.shape) == 1: waveform = waveform.reshape(1, waveform.shape[0]) elif waveform.shape[0] == 3: waveform = sort_channels_to_ZNE(waveform, order) if sampling_rate != 100: waveform = resample_waveform(waveform, sampling_rate, 100) print('Resampled', waveform.shape) orig_waveform = waveform[:, :6000].copy() processed_input = prepare_waveform(waveform) # Make prediction with torch.inference_mode(): output = model(processed_input) p_phase = output[:, 0] s_phase = output[:, 1] return processed_input, p_phase, s_phase, orig_waveform def mark_phases(waveform, uploaded_file, p_thres, s_thres, sampling_rate, order): if uploaded_file is not None: waveform = uploaded_file.name processed_input, p_phase, s_phase, orig_waveform = make_prediction(waveform, sampling_rate, order) # Create a plot of the waveform with the phases marked if sum(processed_input[0][2] == 0): #if input is 1C fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True) ax[0].plot(orig_waveform[0], color='black', lw=1) ax[0].set_ylabel('Norm. Ampl.') else: #if input is 3C fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True) ax[0].plot(orig_waveform[0], color='black', lw=1) ax[1].plot(orig_waveform[1], color='black', lw=1) ax[2].plot(orig_waveform[2], color='black', lw=1) ax[0].set_ylabel('Z') ax[1].set_ylabel('N') ax[2].set_ylabel('E') do_we_have_p = (p_phase.std().item()*60 < p_thres) if do_we_have_p: p_phase_plot = p_phase*processed_input.shape[-1] p_kde = gaussian_kde(p_phase_plot) p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 ) ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r') else: ax[-1].text(0.5, 0.75, 'No P phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes) do_we_have_s = (s_phase.std().item()*60 < s_thres) if do_we_have_s: s_phase_plot = s_phase*processed_input.shape[-1] s_kde = gaussian_kde(s_phase_plot) s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 ) ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b') for a in ax: a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P', alpha=do_we_have_p) a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S', alpha=do_we_have_s) else: ax[-1].text(0.5, 0.25, 'No S phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes) ax[-1].set_xlabel('Time, samples') ax[-1].set_ylabel('Uncert., samples') ax[-1].legend() plt.subplots_adjust(hspace=0., wspace=0.) # Convert the plot to an image and return it fig.canvas.draw() image = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) return image def bin_distances(distances, bin_size=10): # Bin the distances into groups of `bin_size` kilometers binned_distances = {} for i, distance in enumerate(distances): bin_index = distance // bin_size if bin_index not in binned_distances: binned_distances[bin_index] = (distance, i) elif i < binned_distances[bin_index][1]: binned_distances[bin_index] = (distance, i) # Select the first distance in each bin and its index first_distances = [] for bin_index in binned_distances: first_distance, first_distance_index = binned_distances[bin_index] first_distances.append(first_distance_index) return first_distances def variance_coefficient(residuals): # calculate the variance of the residuals var = residuals.var() # scale the variance to a coefficient between 0 and 1 coeff = 1 - (var / (residuals.max() - residuals.min())) return coeff def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms, conf_thres_P, conf_thres_S): distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], [] taup_model = TauPyModel(model=velocity_model) client = Client(client_name) window = radius_km / 111.2 max_waveforms = int(max_waveforms) assert eq_lat - window > -90 and eq_lat + window < 90, "Latitude out of bounds" assert eq_lon - window > -180 and eq_lon + window < 180, "Longitude out of bounds" starttime = obspy.UTCDateTime(timestamp) endtime = starttime + 120 try: print('Starting to download inventory') inv = client.get_stations(network="*", station="*", location="*", channel="*H*", starttime=starttime, endtime=endtime, minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window), minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window), level='station') print('Finished downloading inventory') except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException): fig, ax = plt.subplots() ax.text(0.5,0.5,'Something is wrong with the data provider, try another') fig.canvas.draw(); image = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) return image waveforms = [] cached_waveforms = glob("data/cached/*.mseed") for network in inv: if network.code == 'SY': continue for station in network: print(f"Processing {network.code}.{station.code}...") distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude) arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km, distance_in_degree=distance, phase_list=["P", "S"]) if len(arrivals) > 0: starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15 endtime = starttime + 60 try: filename=f'{network.code}_{station.code}_{starttime}' if f"data/cached/{filename}.mseed" not in cached_waveforms: print(f'Downloading waveform for {filename}') waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*", starttime=starttime, endtime=endtime) waveform.write(f"data/cached/{network.code}_{station.code}_{starttime}.mseed", format="MSEED") print('Finished downloading and caching waveform') else: print('Reading cached waveform') waveform = obspy.read(f"data/cached/{network.code}_{station.code}_{starttime}.mseed") except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException): print(f'Skipping {network.code}_{station.code}_{starttime}') continue waveform = waveform.select(channel="H[BH][ZNE]") waveform = waveform.merge(fill_value=0) waveform = waveform[:3].sort(keys=['channel'], reverse=True) len_check = [len(x.data) for x in waveform] if len(set(len_check)) > 1: continue if len(waveform) == 3: try: waveform = prepare_waveform(np.stack([x.data for x in waveform])) distances.append(distance) t0s.append(starttime) st_lats.append(station.latitude) st_lons.append(station.longitude) waveforms.append(waveform) names.append(f"{network.code}.{station.code}") print(f"Added {network.code}.{station.code} to the list of waveforms") except: continue # If there are no waveforms, return an empty plot if len(waveforms) == 0: print('No waveforms found') fig, ax = plt.subplots() # prints "No waveforms found" on the plot aligned at center and vertically ax.text(0.5,0.5,'No waveforms found', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes) fig.canvas.draw(); image = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) output_picks = pd.DataFrame() output_picks.to_csv('data/picks.csv', index=False) output_csv = 'data/picks.csv' return image, output_picks, output_csv first_distances = bin_distances(distances, bin_size=10/111.2) # Edge case when there are way too many waveforms to process selection_indexes = np.random.choice(first_distances, np.min([len(first_distances), max_waveforms]), replace=False) waveforms = np.array(waveforms)[selection_indexes] distances = np.array(distances)[selection_indexes] t0s = np.array(t0s)[selection_indexes] st_lats = np.array(st_lats)[selection_indexes] st_lons = np.array(st_lons)[selection_indexes] names = np.array(names)[selection_indexes] waveforms = [torch.tensor(waveform) for waveform in waveforms] print('Starting to run predictions') with torch.no_grad(): waveforms_torch = torch.vstack(waveforms) output = model(waveforms_torch) p_phases = output[:, 0] s_phases = output[:, 1] p_phases = p_phases.reshape(len(waveforms),-1) s_phases = s_phases.reshape(len(waveforms),-1) # Max confidence - min variance p_max_confidence = p_phases.std(axis=-1).min() s_max_confidence = s_phases.std(axis=-1).min() print(f"Starting plotting {len(waveforms)} waveforms") fig, ax = plt.subplots(ncols=3, figsize=(10, 3)) # Plot topography print('Fetching topography') params = Topography.DEFAULT.copy() extra_window = 0.5 params["south"] = np.min([st_lats.min(), eq_lat])-extra_window params["north"] = np.max([st_lats.max(), eq_lat])+extra_window params["west"] = np.min([st_lons.min(), eq_lon])-extra_window params["east"] = np.max([st_lons.max(), eq_lon])+extra_window topo_map = Topography(**params) topo_map.fetch() topo_map.load() print('Plotting topo') hillshade = es.hillshade(topo_map.da[0], altitude=10) topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False) topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False) ax[1].imshow(hillshade, cmap="Greys", alpha=0.5) output_picks = pd.DataFrame({'station_name' : [], 'st_lat' : [], 'st_lon' : [], 'starttime' : [], 'p_phase, s' : [], 'p_uncertainty, s' : [], 's_phase, s' : [], 's_uncertainty, s' : [], 'velocity_p, km/s' : [], 'velocity_s, km/s' : []}) for i in range(len(waveforms)): print(f"Plotting waveform {i+1}/{len(waveforms)}") current_P = p_phases[i] current_S = s_phases[i] x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)] x = mdates.date2num(x) # Normalize confidence for the plot p_conf = 1/(current_P.std()/p_max_confidence).item() s_conf = 1/(current_S.std()/s_max_confidence).item() delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1) if (current_P.std().item()*60 < conf_thres_P) or (current_S.std().item()*60 < conf_thres_S): ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|') ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|') velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item() velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item() # Generate an array from st_lat to eq_lat and from st_lon to eq_lon x = np.linspace(st_lons[i], eq_lon, 50) y = np.linspace(st_lats[i], eq_lat, 50) # Plot the array ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.1, vmin=0, vmax=8) ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.1, vmin=0, vmax=8) else: velocity_p = np.nan velocity_s = np.nan ax[0].set_ylabel('Z') print(f"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}") output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]], 'st_lat' : [st_lats[i]], 'st_lon' : [st_lons[i]], 'starttime' : [str(t0s[i])], 'p_phase, s' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty, s' : [current_P.std().item()*60], 's_phase, s' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty, s' : [current_S.std().item()*60], 'velocity_p, km/s' : [velocity_p], 'velocity_s, km/s' : [velocity_s]})) # Add legend ax[0].scatter(None, None, color='r', marker='|', label='P') ax[0].scatter(None, None, color='b', marker='|', label='S') ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20)) ax[0].legend() print('Plotting stations') for i in range(1,3): ax[i].scatter(st_lons, st_lats, color='b', label='Stations') ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake') ax[i].set_aspect('equal') ax[i].set_xticklabels(ax[i].get_xticks(), rotation = 50) fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8, wspace=0.02, hspace=0.02) cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8]) cbar = fig.colorbar(ax[2].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), cax=cb_ax) cbar.set_label('Velocity (km/s)') ax[1].set_title('P Velocity') ax[2].set_title('S Velocity') for a in ax: a.tick_params(axis='both', which='major', labelsize=8) plt.subplots_adjust(hspace=0., wspace=0.5) fig.canvas.draw(); image = np.array(fig.canvas.renderer.buffer_rgba()) plt.close(fig) output_csv = f'data/velocity/{eq_lat}_{eq_lon}_{source_depth_km}_{timestamp}_{len(waveforms)}.csv' output_picks.to_csv(output_csv, index=False) return image, output_picks, output_csv def interpolate_vel_model(velocity_model, initial_velocity, lat_values, lon_values, depth_values, n_lat, n_lon, n_depth): # Create a mask for points with the initial velocity initial_velocity_mask = (velocity_model == initial_velocity) # Find the indices of points with non-initial velocities non_initial_velocity_indices = np.argwhere(~initial_velocity_mask) # Extract the coordinates and corresponding velocities of the known points known_points = np.column_stack([lat_values[non_initial_velocity_indices[:, 0]], lon_values[non_initial_velocity_indices[:, 1]], depth_values[non_initial_velocity_indices[:, 2]]]) # Find the maximum depth in the known_points max_known_depth = np.max(known_points[:, 2]) known_velocities = velocity_model[~initial_velocity_mask] # Create a grid of points for the entire volume grid_points = np.array(np.meshgrid(lat_values, lon_values, depth_values, indexing='ij')).reshape(3, -1).T # Create a mask for grid points that are deeper than the maximum known depth depth_mask = grid_points[:, 2] <= max_known_depth # Interpolate the velocities at the grid points interpolated_velocities = griddata(known_points, known_velocities, grid_points[depth_mask], method='linear') # Fill nan values with the nearest known velocities interpolated_velocities_filled = griddata(known_points, known_velocities, grid_points[depth_mask], method='nearest') interpolated_velocities[np.isnan(interpolated_velocities)] = interpolated_velocities_filled[np.isnan(interpolated_velocities)] # Initialize an array with the same length as grid_points and fill it with nan values interpolated_velocities_with_depth_limit = np.full(grid_points.shape[0], np.nan) # Update the array with the interpolated velocities for the masked grid points interpolated_velocities_with_depth_limit[depth_mask] = interpolated_velocities # Reshape the interpolated velocities to match the shape of the velocity_model interpolated_velocity_model = interpolated_velocities_with_depth_limit.reshape(n_lat, n_lon, n_depth) return interpolated_velocity_model # Function to find the closest index for a given value in an array def find_closest_index(array, value): return np.argmin(np.abs(array - value)) # FIX AFTER CONFERENCE # def compute_velocity_model(azimuth, elevation, interpolate, n_lat, n_lon, n_depth): # filename = list(output_csv.temp_files)[0] # df = pd.read_csv(filename) # filename = filename.split('/')[-1] # # Current EQ location # eq_lat = float(filename.split("_")[0]) # eq_lon = float(filename.split("_")[1]) # eq_depth = float(filename.split("_")[2]) # # Define the region of interest (latitude, longitude, and depth ranges) # lat_range = (np.min([df.st_lat.min(), eq_lat]), np.max([df.st_lat.max(), eq_lat])) # lon_range = (np.min([df.st_lon.min(), eq_lon]), np.max([df.st_lon.max(), eq_lon])) # depth_range = (0, 50) # # Define the number of nodes in each dimension # num_points = 100 # taup_model = TauPyModel(model='1066a') # # Create the grid # lat_values = np.linspace(lat_range[0], lat_range[1], n_lat) # lon_values = np.linspace(lon_range[0], lon_range[1], n_lon) # depth_values = np.linspace(depth_range[0], depth_range[1], n_depth) # # Initialize the velocity model with constant values # initial_velocity = 0 # km/s, this can be P-wave or S-wave velocity # velocity_model = np.full((n_lat, n_lon, n_depth), initial_velocity, dtype=float) # # Loop through the stations and update the velocity model # for i in range(len(df)): # if ~np.isnan(df['velocity_p, km/s'].iloc[i]): # ray_path = taup_model.get_ray_paths_geo(source_depth_in_km=eq_depth, # source_latitude_in_deg=eq_lat, # source_longitude_in_deg=eq_lon, # receiver_latitude_in_deg=df.st_lat.iloc[i], # receiver_longitude_in_deg=df.st_lon.iloc[i], # phase_list=['P', 'S']) # # THERE IS A PROBLEM WITH THE RAY PATHS. APPARENTLY LAT AND LON DON'T EXIST (HOW DID IT WORK BEFORE?) # print(ray_path[0].path) # # Create the interpolator objects for latitude, longitude, and depth # interp_latitude = interp1d(np.linspace(0, ray_path[0].path['lat'].max(), len(ray_path[0].path['lat'])), ray_path[0].path['lat']) # interp_longitude = interp1d(np.linspace(0, ray_path[0].path['lon'].max(), len(ray_path[0].path['lon'])), ray_path[0].path['lon']) # interp_depth = interp1d(np.linspace(0, ray_path[0].path['depth'].max(), len(ray_path[0].path['depth'])), ray_path[0].path['depth']) # # Resample the ray path to N points # lat_values_interp = interp_latitude(np.linspace(0, ray_path[0].path['lat'].max(), num_points)) # lon_values_interp = interp_longitude(np.linspace(0, ray_path[0].path['lon'].max(), num_points)) # depth_values_interp = interp_depth(np.linspace(0, ray_path[0].path['depth'].max(), num_points)) # # Loop through the interpolated coordinates and update the grid cells with the average P-wave velocity # for lat, lon, depth in zip(lat_values_interp, lon_values_interp, depth_values_interp): # lat_index = find_closest_index(lat_values, lat) # lon_index = find_closest_index(lon_values, lon) # depth_index = find_closest_index(depth_values, depth) # if velocity_model[lat_index, lon_index, depth_index] == initial_velocity: # velocity_model[lat_index, lon_index, depth_index] = df['velocity_p, km/s'].iloc[i] # else: # velocity_model[lat_index, lon_index, depth_index] = (velocity_model[lat_index, lon_index, depth_index] + # df['velocity_p, km/s'].iloc[i]) / 2 # # Create the figure and axis # fig = plt.figure(figsize=(8, 8)) # ax = fig.add_subplot(111, projection='3d') # # Set the plot limits # ax.set_xlim3d(lat_range[0], lat_range[1]) # ax.set_ylim3d(lon_range[0], lon_range[1]) # ax.set_zlim3d(depth_range[1], depth_range[0]) # ax.set_xlabel('Latitude') # ax.set_ylabel('Longitude') # ax.set_zlabel('Depth (km)') # ax.set_title('Velocity Model') # # Create the meshgrid # x, y, z = np.meshgrid( # np.linspace(lat_range[0], lat_range[1], velocity_model.shape[0]+1), # np.linspace(lon_range[0], lon_range[1], velocity_model.shape[1]+1), # np.linspace(depth_range[0], depth_range[1], velocity_model.shape[2]+1), # indexing='ij' # ) # # Create the color array # norm = plt.Normalize(vmin=2, vmax=8) # colors_vel = plt.cm.plasma(norm(velocity_model)) # # Plot the voxels # if interpolate: # interpolated_velocity_model = interpolate_vel_model(velocity_model, initial_velocity, lat_values, lon_values, depth_values, n_lat, n_lon, n_depth) # colors_interp = plt.cm.plasma(norm(interpolated_velocity_model)) # ax.voxels(x, y, z, interpolated_velocity_model > 0, facecolors=colors_interp, alpha=0.5, edgecolor='k') # ax.voxels(x, y, z, velocity_model > 0, facecolors=colors_vel, alpha=1, edgecolor='black') # # Set the view angle # ax.view_init(elev=elevation, azim=azimuth) # m = cm.ScalarMappable(cmap=plt.cm.plasma, norm=norm) # m.set_array([]) # plt.colorbar(m) # # Show the plot # fig.canvas.draw(); # image = np.array(fig.canvas.renderer.buffer_rgba()) # plt.close(fig) # return image # model = torch.jit.load("model.pt") model = torch.jit.load("model.pt") model.eval() with gr.Blocks() as demo: gr.HTML("""
Detect P and S seismic phases with uncertainty
.npy
format.Please contact me at anovosel@stanford.edu with questions and feedback
Using PhaseHunter to Analyze Seismic Waveforms
Select an earthquake from the global earthquake catalogue (e.g. USGS) and the app will download the waveform from the FDSN client of your choice. The app will use a velocity model of your choice to select appropriate time windows for each station within a specified radius of the earthquake.
The app will then analyze the waveforms and mark the detected phases on the waveform. Pick data for each waveform is reported in seconds from the start of the waveform.
Velocities are derived from distance and travel time determined by PhaseHunter picks (v = distance/predicted_pick_time). The background of the velocity plot is colored by DEM.