crimeacs commited on
Commit
d4d4582
1 Parent(s): d5f505f

Removed 3D velocity, because I broke it somehow

Browse files
Gradio_app.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
app.py CHANGED
@@ -29,6 +29,9 @@ from mpl_toolkits.axes_grid1 import ImageGrid
29
 
30
  from glob import glob
31
 
 
 
 
32
 
33
  def resample_waveform(waveform, original_freq, target_freq):
34
  """
@@ -435,10 +438,6 @@ def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source
435
 
436
  return image, output_picks, output_csv
437
 
438
- import numpy as np
439
- from matplotlib import colors, cm
440
- from scipy.interpolate import griddata
441
-
442
  def interpolate_vel_model(velocity_model, initial_velocity, lat_values, lon_values, depth_values, n_lat, n_lon, n_depth):
443
  # Create a mask for points with the initial velocity
444
  initial_velocity_mask = (velocity_model == initial_velocity)
@@ -485,120 +484,123 @@ def interpolate_vel_model(velocity_model, initial_velocity, lat_values, lon_valu
485
  def find_closest_index(array, value):
486
  return np.argmin(np.abs(array - value))
487
 
488
- def compute_velocity_model(azimuth, elevation, interpolate, n_lat, n_lon, n_depth):
489
- filename = list(output_csv.temp_files)[0]
 
490
 
491
- df = pd.read_csv(filename)
492
- filename = filename.split('/')[-1]
493
 
494
- # Current EQ location
495
- eq_lat = float(filename.split("_")[0])
496
- eq_lon = float(filename.split("_")[1])
497
- eq_depth = float(filename.split("_")[2])
498
-
499
- # Define the region of interest (latitude, longitude, and depth ranges)
500
- lat_range = (np.min([df.st_lat.min(), eq_lat]), np.max([df.st_lat.max(), eq_lat]))
501
- lon_range = (np.min([df.st_lon.min(), eq_lon]), np.max([df.st_lon.max(), eq_lon]))
502
- depth_range = (0, 50)
503
-
504
- # Define the number of nodes in each dimension
505
- num_points = 100
506
-
507
- taup_model = TauPyModel(model='1066a')
508
-
509
- # Create the grid
510
- lat_values = np.linspace(lat_range[0], lat_range[1], n_lat)
511
- lon_values = np.linspace(lon_range[0], lon_range[1], n_lon)
512
- depth_values = np.linspace(depth_range[0], depth_range[1], n_depth)
513
-
514
- # Initialize the velocity model with constant values
515
- initial_velocity = 0 # km/s, this can be P-wave or S-wave velocity
516
- velocity_model = np.full((n_lat, n_lon, n_depth), initial_velocity, dtype=float)
517
-
518
- # Loop through the stations and update the velocity model
519
- for i in range(len(df)):
520
- if ~np.isnan(df['velocity_p, km/s'].iloc[i]):
521
-
522
- ray_path = taup_model.get_ray_paths_geo(source_depth_in_km=eq_depth,
523
- source_latitude_in_deg=eq_lat,
524
- source_longitude_in_deg=eq_lon,
525
- receiver_latitude_in_deg=df.st_lat.iloc[i],
526
- receiver_longitude_in_deg=df.st_lon.iloc[i],
527
- phase_list=['P', 'S'])
528
-
529
- # Create the interpolator objects for latitude, longitude, and depth
530
- interp_latitude = interp1d(np.linspace(0, ray_path[0].path['lat'].max(), len(ray_path[0].path['lat'])), ray_path[0].path['lat'])
531
- interp_longitude = interp1d(np.linspace(0, ray_path[0].path['lon'].max(), len(ray_path[0].path['lon'])), ray_path[0].path['lon'])
532
- interp_depth = interp1d(np.linspace(0, ray_path[0].path['depth'].max(), len(ray_path[0].path['depth'])), ray_path[0].path['depth'])
533
-
534
- # Resample the ray path to N points
535
- lat_values_interp = interp_latitude(np.linspace(0, ray_path[0].path['lat'].max(), num_points))
536
- lon_values_interp = interp_longitude(np.linspace(0, ray_path[0].path['lon'].max(), num_points))
537
- depth_values_interp = interp_depth(np.linspace(0, ray_path[0].path['depth'].max(), num_points))
538
-
539
- # Loop through the interpolated coordinates and update the grid cells with the average P-wave velocity
540
- for lat, lon, depth in zip(lat_values_interp, lon_values_interp, depth_values_interp):
541
- lat_index = find_closest_index(lat_values, lat)
542
- lon_index = find_closest_index(lon_values, lon)
543
- depth_index = find_closest_index(depth_values, depth)
 
 
 
544
 
545
- if velocity_model[lat_index, lon_index, depth_index] == initial_velocity:
546
- velocity_model[lat_index, lon_index, depth_index] = df['velocity_p, km/s'].iloc[i]
547
- else:
548
- velocity_model[lat_index, lon_index, depth_index] = (velocity_model[lat_index, lon_index, depth_index] +
549
- df['velocity_p, km/s'].iloc[i]) / 2
550
-
551
- # Create the figure and axis
552
- fig = plt.figure(figsize=(8, 8))
553
- ax = fig.add_subplot(111, projection='3d')
554
-
555
- # Set the plot limits
556
- ax.set_xlim3d(lat_range[0], lat_range[1])
557
- ax.set_ylim3d(lon_range[0], lon_range[1])
558
- ax.set_zlim3d(depth_range[1], depth_range[0])
559
-
560
- ax.set_xlabel('Latitude')
561
- ax.set_ylabel('Longitude')
562
- ax.set_zlabel('Depth (km)')
563
- ax.set_title('Velocity Model')
564
 
565
- # Create the meshgrid
566
- x, y, z = np.meshgrid(
567
- np.linspace(lat_range[0], lat_range[1], velocity_model.shape[0]+1),
568
- np.linspace(lon_range[0], lon_range[1], velocity_model.shape[1]+1),
569
- np.linspace(depth_range[0], depth_range[1], velocity_model.shape[2]+1),
570
- indexing='ij'
571
- )
572
-
573
- # Create the color array
574
- norm = plt.Normalize(vmin=2, vmax=8)
575
- colors_vel = plt.cm.plasma(norm(velocity_model))
576
 
577
- # Plot the voxels
578
- if interpolate:
579
- interpolated_velocity_model = interpolate_vel_model(velocity_model, initial_velocity, lat_values, lon_values, depth_values, n_lat, n_lon, n_depth)
580
- colors_interp = plt.cm.plasma(norm(interpolated_velocity_model))
581
- ax.voxels(x, y, z, interpolated_velocity_model > 0, facecolors=colors_interp, alpha=0.5, edgecolor='k')
582
 
583
- ax.voxels(x, y, z, velocity_model > 0, facecolors=colors_vel, alpha=1, edgecolor='black')
584
 
585
- # Set the view angle
586
- ax.view_init(elev=elevation, azim=azimuth)
587
 
588
- m = cm.ScalarMappable(cmap=plt.cm.plasma, norm=norm)
589
- m.set_array([])
590
- plt.colorbar(m)
591
 
592
- # Show the plot
593
- fig.canvas.draw();
594
- image = np.array(fig.canvas.renderer.buffer_rgba())
595
- plt.close(fig)
596
 
597
- return image
598
 
599
  # model = torch.jit.load("model.pt")
600
  model = torch.jit.load("model.pt")
601
-
602
  model.eval()
603
 
604
  with gr.Blocks() as demo:
@@ -625,8 +627,8 @@ with gr.Blocks() as demo:
625
  -webkit-text-fill-color: transparent;
626
  background-clip: text;">uncertainty</span></p>
627
  <ul style="font-size: 16px; margin-bottom: 40px;">
628
- <li>Detect seismic phases by selecting a sample waveform or uploading your own waveform in <code>.npy</code> format.</li>
629
- <li>Select an earthquake from the global earthquake catalogue and PhaseHunter will analyze seismic stations in the given radius.</li>
630
  <li>Waveforms should be sampled at 100 samples/sec and have 3 (Z, N, E) or 1 (Z) channels. PhaseHunter analyzes the first 6000 samples of your file.</li>
631
  </ul>
632
  <p style="font-size: 16px; margin-bottom: 20px;">Please contact me at [email protected] with questions and feedback</p>
@@ -776,25 +778,25 @@ with gr.Blocks() as demo:
776
  button_phases = gr.Button("Predict phases")
777
  output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)
778
 
779
- with gr.Row():
780
- with gr.Column(scale=2):
781
- azimuth_input = gr.Slider(minimum=-180, maximum=180, value=0, step=5, label="Azimuth", interactive=True)
782
- elevation_input = gr.Slider(minimum=-90, maximum=90, value=30, step=5, label="Elevation", interactive=True)
783
-
784
- with gr.Row():
785
- interpolate_input = gr.Checkbox(label="Interpolate", info="Interpolate velocity model")
786
- n_lat_input = gr.Slider(minimum=5, maximum=100, value=50, step=5, label="N lat", info='Number of Lat grid points', interactive=True)
787
- n_lon_input = gr.Slider(minimum=5, maximum=100, value=50, step=5, label="N lon", info='Number of Lon grid points', interactive=True)
788
- n_depth_input = gr.Slider(minimum=5, maximum=100, value=50, step=5, label="N depth", info='Number of Depth grid points', interactive=True)
789
 
790
- button = gr.Button("Look at 3D Velocities")
791
- outputs_vel_model = gr.Image(label="3D Velocity Model")
792
-
793
- button.click(compute_velocity_model,
794
- inputs=[azimuth_input, elevation_input,
795
- interpolate_input, n_lat_input,
796
- n_lon_input, n_depth_input],
797
- outputs=[outputs_vel_model])
798
 
799
  with gr.Row():
800
  output_picks = gr.Dataframe(label='Pick data',
 
29
 
30
  from glob import glob
31
 
32
+ import numpy as np
33
+ from matplotlib import colors, cm
34
+ from scipy.interpolate import griddata
35
 
36
  def resample_waveform(waveform, original_freq, target_freq):
37
  """
 
438
 
439
  return image, output_picks, output_csv
440
 
 
 
 
 
441
  def interpolate_vel_model(velocity_model, initial_velocity, lat_values, lon_values, depth_values, n_lat, n_lon, n_depth):
442
  # Create a mask for points with the initial velocity
443
  initial_velocity_mask = (velocity_model == initial_velocity)
 
484
  def find_closest_index(array, value):
485
  return np.argmin(np.abs(array - value))
486
 
487
+ # FIX AFTER CONFERENCE
488
+ # def compute_velocity_model(azimuth, elevation, interpolate, n_lat, n_lon, n_depth):
489
+ # filename = list(output_csv.temp_files)[0]
490
 
491
+ # df = pd.read_csv(filename)
492
+ # filename = filename.split('/')[-1]
493
 
494
+ # # Current EQ location
495
+ # eq_lat = float(filename.split("_")[0])
496
+ # eq_lon = float(filename.split("_")[1])
497
+ # eq_depth = float(filename.split("_")[2])
498
+
499
+ # # Define the region of interest (latitude, longitude, and depth ranges)
500
+ # lat_range = (np.min([df.st_lat.min(), eq_lat]), np.max([df.st_lat.max(), eq_lat]))
501
+ # lon_range = (np.min([df.st_lon.min(), eq_lon]), np.max([df.st_lon.max(), eq_lon]))
502
+ # depth_range = (0, 50)
503
+
504
+ # # Define the number of nodes in each dimension
505
+ # num_points = 100
506
+
507
+ # taup_model = TauPyModel(model='1066a')
508
+
509
+ # # Create the grid
510
+ # lat_values = np.linspace(lat_range[0], lat_range[1], n_lat)
511
+ # lon_values = np.linspace(lon_range[0], lon_range[1], n_lon)
512
+ # depth_values = np.linspace(depth_range[0], depth_range[1], n_depth)
513
+
514
+ # # Initialize the velocity model with constant values
515
+ # initial_velocity = 0 # km/s, this can be P-wave or S-wave velocity
516
+ # velocity_model = np.full((n_lat, n_lon, n_depth), initial_velocity, dtype=float)
517
+
518
+ # # Loop through the stations and update the velocity model
519
+ # for i in range(len(df)):
520
+ # if ~np.isnan(df['velocity_p, km/s'].iloc[i]):
521
+
522
+ # ray_path = taup_model.get_ray_paths_geo(source_depth_in_km=eq_depth,
523
+ # source_latitude_in_deg=eq_lat,
524
+ # source_longitude_in_deg=eq_lon,
525
+ # receiver_latitude_in_deg=df.st_lat.iloc[i],
526
+ # receiver_longitude_in_deg=df.st_lon.iloc[i],
527
+ # phase_list=['P', 'S'])
528
+
529
+ # # THERE IS A PROBLEM WITH THE RAY PATHS. APPARENTLY LAT AND LON DON'T EXIST (HOW DID IT WORK BEFORE?)
530
+ # print(ray_path[0].path)
531
+
532
+ # # Create the interpolator objects for latitude, longitude, and depth
533
+ # interp_latitude = interp1d(np.linspace(0, ray_path[0].path['lat'].max(), len(ray_path[0].path['lat'])), ray_path[0].path['lat'])
534
+ # interp_longitude = interp1d(np.linspace(0, ray_path[0].path['lon'].max(), len(ray_path[0].path['lon'])), ray_path[0].path['lon'])
535
+ # interp_depth = interp1d(np.linspace(0, ray_path[0].path['depth'].max(), len(ray_path[0].path['depth'])), ray_path[0].path['depth'])
536
+
537
+ # # Resample the ray path to N points
538
+ # lat_values_interp = interp_latitude(np.linspace(0, ray_path[0].path['lat'].max(), num_points))
539
+ # lon_values_interp = interp_longitude(np.linspace(0, ray_path[0].path['lon'].max(), num_points))
540
+ # depth_values_interp = interp_depth(np.linspace(0, ray_path[0].path['depth'].max(), num_points))
541
+
542
+ # # Loop through the interpolated coordinates and update the grid cells with the average P-wave velocity
543
+ # for lat, lon, depth in zip(lat_values_interp, lon_values_interp, depth_values_interp):
544
+ # lat_index = find_closest_index(lat_values, lat)
545
+ # lon_index = find_closest_index(lon_values, lon)
546
+ # depth_index = find_closest_index(depth_values, depth)
547
 
548
+ # if velocity_model[lat_index, lon_index, depth_index] == initial_velocity:
549
+ # velocity_model[lat_index, lon_index, depth_index] = df['velocity_p, km/s'].iloc[i]
550
+ # else:
551
+ # velocity_model[lat_index, lon_index, depth_index] = (velocity_model[lat_index, lon_index, depth_index] +
552
+ # df['velocity_p, km/s'].iloc[i]) / 2
553
+
554
+ # # Create the figure and axis
555
+ # fig = plt.figure(figsize=(8, 8))
556
+ # ax = fig.add_subplot(111, projection='3d')
557
+
558
+ # # Set the plot limits
559
+ # ax.set_xlim3d(lat_range[0], lat_range[1])
560
+ # ax.set_ylim3d(lon_range[0], lon_range[1])
561
+ # ax.set_zlim3d(depth_range[1], depth_range[0])
562
+
563
+ # ax.set_xlabel('Latitude')
564
+ # ax.set_ylabel('Longitude')
565
+ # ax.set_zlabel('Depth (km)')
566
+ # ax.set_title('Velocity Model')
567
 
568
+ # # Create the meshgrid
569
+ # x, y, z = np.meshgrid(
570
+ # np.linspace(lat_range[0], lat_range[1], velocity_model.shape[0]+1),
571
+ # np.linspace(lon_range[0], lon_range[1], velocity_model.shape[1]+1),
572
+ # np.linspace(depth_range[0], depth_range[1], velocity_model.shape[2]+1),
573
+ # indexing='ij'
574
+ # )
575
+
576
+ # # Create the color array
577
+ # norm = plt.Normalize(vmin=2, vmax=8)
578
+ # colors_vel = plt.cm.plasma(norm(velocity_model))
579
 
580
+ # # Plot the voxels
581
+ # if interpolate:
582
+ # interpolated_velocity_model = interpolate_vel_model(velocity_model, initial_velocity, lat_values, lon_values, depth_values, n_lat, n_lon, n_depth)
583
+ # colors_interp = plt.cm.plasma(norm(interpolated_velocity_model))
584
+ # ax.voxels(x, y, z, interpolated_velocity_model > 0, facecolors=colors_interp, alpha=0.5, edgecolor='k')
585
 
586
+ # ax.voxels(x, y, z, velocity_model > 0, facecolors=colors_vel, alpha=1, edgecolor='black')
587
 
588
+ # # Set the view angle
589
+ # ax.view_init(elev=elevation, azim=azimuth)
590
 
591
+ # m = cm.ScalarMappable(cmap=plt.cm.plasma, norm=norm)
592
+ # m.set_array([])
593
+ # plt.colorbar(m)
594
 
595
+ # # Show the plot
596
+ # fig.canvas.draw();
597
+ # image = np.array(fig.canvas.renderer.buffer_rgba())
598
+ # plt.close(fig)
599
 
600
+ # return image
601
 
602
  # model = torch.jit.load("model.pt")
603
  model = torch.jit.load("model.pt")
 
604
  model.eval()
605
 
606
  with gr.Blocks() as demo:
 
627
  -webkit-text-fill-color: transparent;
628
  background-clip: text;">uncertainty</span></p>
629
  <ul style="font-size: 16px; margin-bottom: 40px;">
630
+ <li>Tab 1: Detect seismic phases by selecting a sample waveform or uploading your own waveform in <code>.npy</code> format.</li>
631
+ <li>Tab 2: Select an earthquake from the global earthquake catalogue and PhaseHunter will analyze seismic stations in the given radius.</li>
632
  <li>Waveforms should be sampled at 100 samples/sec and have 3 (Z, N, E) or 1 (Z) channels. PhaseHunter analyzes the first 6000 samples of your file.</li>
633
  </ul>
634
  <p style="font-size: 16px; margin-bottom: 20px;">Please contact me at [email protected] with questions and feedback</p>
 
778
  button_phases = gr.Button("Predict phases")
779
  output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)
780
 
781
+ # with gr.Row():
782
+ # with gr.Column(scale=2):
783
+ # azimuth_input = gr.Slider(minimum=-180, maximum=180, value=0, step=5, label="Azimuth", interactive=True)
784
+ # elevation_input = gr.Slider(minimum=-90, maximum=90, value=30, step=5, label="Elevation", interactive=True)
785
+
786
+ # with gr.Row():
787
+ # interpolate_input = gr.Checkbox(label="Interpolate", info="Interpolate velocity model")
788
+ # n_lat_input = gr.Slider(minimum=5, maximum=100, value=50, step=5, label="N lat", info='Number of Lat grid points', interactive=True)
789
+ # n_lon_input = gr.Slider(minimum=5, maximum=100, value=50, step=5, label="N lon", info='Number of Lon grid points', interactive=True)
790
+ # n_depth_input = gr.Slider(minimum=5, maximum=100, value=50, step=5, label="N depth", info='Number of Depth grid points', interactive=True)
791
 
792
+ # button = gr.Button("Look at 3D Velocities")
793
+ # outputs_vel_model = gr.Image(label="3D Velocity Model")
794
+
795
+ # button.click(compute_velocity_model,
796
+ # inputs=[azimuth_input, elevation_input,
797
+ # interpolate_input, n_lat_input,
798
+ # n_lon_input, n_depth_input],
799
+ # outputs=[outputs_vel_model])
800
 
801
  with gr.Row():
802
  output_picks = gr.Dataframe(label='Pick data',
data/velocity/35.766_-117.605_10.0_2019-07-04T17:33:49-00_15.csv CHANGED
@@ -1,16 +1,16 @@
1
  station_name,st_lat,st_lon,starttime,"p_phase, s","p_uncertainty, s","s_phase, s","s_uncertainty, s","velocity_p, km/s","velocity_s, km/s"
2
- LB.DAC,36.277,-117.593697,2019-07-04T17:33:43.387184Z,34.439029693603516,0.23750784806907177,41.48210525512695,0.84033178165555,,
3
- CI.ISA,35.66278,-118.47403,2019-07-04T17:33:46.297658Z,14.392077445983887,0.031968383118510246,26.656494140625,0.06666059140115976,5.509786370336251,2.9747824951914903
4
- CI.JRC2,35.98249,-117.80885,2019-07-04T17:33:39.947494Z,7.330288887023926,0.016060356865637004,13.382941246032715,0.03524674102663994,4.130917960194064,2.262643275505274
5
- NN.GWY,36.186001,-116.6698,2019-07-04T17:33:48.493781Z,15.728899002075195,0.045239757746458054,27.405405044555664,0.012221475772093982,6.119231109018811,3.5120359625275515
6
- NN.STHB,36.645401,-116.338799,2019-07-04T17:33:55.443778Z,23.352947235107422,0.3744226321578026,44.04683303833008,0.1678685937076807,6.418864645982177,3.40318240942485
7
- CI.RRX,34.875332,-116.996841,2019-07-04T17:33:50.712219Z,17.300827026367188,0.046564643271267414,30.308242797851562,0.07697680732235312,6.553167458647257,3.7407386971609977
8
- NN.QSM,35.965,-116.869102,2019-07-04T17:33:45.081547Z,10.853179931640625,0.03833597875200212,19.083938598632812,0.020896304631605744,6.441474783566184,3.6633153313634157
9
- CI.SRT,35.69235,-117.75051,2019-07-04T17:33:38.029990Z,4.525603294372559,0.015247567207552493,9.212132453918457,0.017153594526462257,3.4203901487527526,1.680319839371246
10
- CI.CWC,36.439049,-118.080498,2019-07-04T17:33:47.189005Z,16.30278205871582,0.03326277597807348,28.5207576751709,0.025247696321457624,5.286053905666142,3.0215671601782677
11
- CI.SHO,35.899529,-116.275299,2019-07-04T17:33:51.673022Z,19.154117584228516,0.029428565176203847,33.864654541015625,0.038687243359163404,6.306307564126418,3.5668976471999314
12
- CI.OSI,34.6145,-118.7235,2019-07-04T17:33:57.203547Z,26.982280731201172,0.26682447642087936,49.88245391845703,0.21120380144566298,,
13
- CI.ADO,34.550461,-117.433907,2019-07-04T17:33:53.650962Z,21.616382598876953,0.04179573501460254,39.828887939453125,0.11273605981841683,6.294295200951223,3.416110775195922
14
- CI.EDW2,34.8811,-117.993881,2019-07-04T17:33:49.567241Z,17.19280242919922,0.023178785922937095,31.17211151123047,0.14238633681088686,6.080147521998276,3.3534711002313884
15
- CI.HEC,34.8294,-116.335,2019-07-04T17:33:56.148977Z,23.503509521484375,0.16815592534840107,41.08108901977539,0.05570112029090524,6.6093598323533715,3.7813786210938956
16
- CI.WMF,36.11758,-117.85486,2019-07-04T17:33:41.867962Z,9.510456085205078,0.018548613879829645,17.035369873046875,0.035437317565083504,4.7426953739315625,2.6477379954424243
 
1
  station_name,st_lat,st_lon,starttime,"p_phase, s","p_uncertainty, s","s_phase, s","s_uncertainty, s","velocity_p, km/s","velocity_s, km/s"
2
+ NN.GWY,36.186001,-116.6698,2019-07-04T17:33:48.493781Z,15.700143814086914,0.032990213949233294,27.400177001953125,0.021678594639524817,6.130438626794903,3.5127060703751187
3
+ NN.QSM,35.965,-116.869102,2019-07-04T17:33:45.081547Z,10.825798034667969,0.03368678851984441,19.0788516998291,0.019648977904580534,6.4577673283107595,3.664292062807735
4
+ CI.SHO,35.899529,-116.275299,2019-07-04T17:33:51.673022Z,19.146766662597656,0.035460374783724546,33.84723663330078,0.04468856379389763,6.30872871300763,3.568733185348003
5
+ NN.STHB,36.645401,-116.338799,2019-07-04T17:33:55.443778Z,23.533306121826172,0.30755365267395973,44.214805603027344,0.1947527378797531,6.369670568636879,3.390253679565082
6
+ CI.ADO,34.550461,-117.433907,2019-07-04T17:33:53.650962Z,21.59795379638672,0.06652493728324771,39.832244873046875,0.07596344919875264,6.299665909869628,3.4158228763577374
7
+ CI.CWC,36.439049,-118.080498,2019-07-04T17:33:47.189005Z,16.31502342224121,0.03174463869072497,28.542631149291992,0.03808272653259337,5.282087714150544,3.0192516003149317
8
+ CI.EDW2,34.8811,-117.993881,2019-07-04T17:33:49.567241Z,17.189565658569336,0.027216661255806684,31.171907424926758,0.13113449793308973,6.081292405081156,3.3534930558182605
9
+ CI.OSI,34.6145,-118.7235,2019-07-04T17:33:57.203547Z,27.027793884277344,0.2828584983944893,49.76795196533203,0.1476773852482438,6.048733936517377,3.284923884569468
10
+ CI.HEC,34.8294,-116.335,2019-07-04T17:33:56.148977Z,23.56346893310547,0.12240480165928602,41.065738677978516,0.039880009135231376,6.5925417090174125,3.782792097538392
11
+ CI.ISA,35.66278,-118.47403,2019-07-04T17:33:46.297658Z,14.406868934631348,0.03547209897078574,26.673168182373047,0.04885842092335224,5.5041294893778305,2.972922886794878
12
+ LB.DAC,36.277,-117.593697,2019-07-04T17:33:43.387184Z,34.548667907714844,0.15354723203927279,41.79047393798828,1.0928620398044586,,
13
+ CI.JRC2,35.98249,-117.80885,2019-07-04T17:33:39.947494Z,7.319685935974121,0.013258439430501312,13.406767845153809,0.024791041505523026,4.136901812685252,2.2586220904663317
14
+ CI.RRX,34.875332,-116.996841,2019-07-04T17:33:50.712219Z,17.288339614868164,0.037936256267130375,30.341846466064453,0.12148946989327669,6.557900828103267,3.7365958200229463
15
+ CI.WMF,36.11758,-117.85486,2019-07-04T17:33:41.867962Z,9.49942398071289,0.009130067483056337,17.041561126708984,0.028638315852731466,4.748203277468246,2.646776063760303
16
+ CI.SRT,35.69235,-117.75051,2019-07-04T17:33:38.029990Z,4.530585289001465,0.018513815011829138,9.206761360168457,0.01343689626082778,3.4166289646533787,1.6813001140882917
data/velocity/35.766_-117.605_10.0_2019-07-04T17:33:49-00_3.csv CHANGED
@@ -1,4 +1,4 @@
1
  station_name,st_lat,st_lon,starttime,"p_phase, s","p_uncertainty, s","s_phase, s","s_uncertainty, s","velocity_p, km/s","velocity_s, km/s"
2
- CI.WMF,36.11758,-117.85486,2019-07-04T17:33:41.867962Z,9.503650665283203,0.0166851474205032,17.022594451904297,0.04997983225621283,4.746091546067712,2.6497251172094707
3
- CI.SRT,35.69235,-117.75051,2019-07-04T17:33:38.029990Z,4.53201961517334,0.017489900928921998,9.215676307678223,0.019567753770388663,3.4155476453388767,1.67967367867923
4
  CI.JRC2,35.98249,-117.80885,2019-07-04T17:33:39.947494Z,7.3213396072387695,0.014792497968301177,13.395279884338379,0.025232930202037096,4.135967410510336,2.2605591132307814
 
1
  station_name,st_lat,st_lon,starttime,"p_phase, s","p_uncertainty, s","s_phase, s","s_uncertainty, s","velocity_p, km/s","velocity_s, km/s"
2
+ CI.SRT,35.69235,-117.75051,2019-07-04T17:33:38.029990Z,4.52931022644043,0.014338254695758224,9.210612297058105,0.013868825335521251,3.417590792273917,1.6805971661817796
3
+ CI.WMF,36.11758,-117.85486,2019-07-04T17:33:41.867962Z,9.509395599365234,0.017237813444808125,17.024826049804688,0.043195366160944104,4.743224278343435,2.6493777937777434
4
  CI.JRC2,35.98249,-117.80885,2019-07-04T17:33:39.947494Z,7.3213396072387695,0.014792497968301177,13.395279884338379,0.025232930202037096,4.135967410510336,2.2605591132307814
requirements.txt CHANGED
@@ -15,4 +15,5 @@ obspy
15
  pandas
16
  bmi_topography
17
  earthpy
 
18
  git+http://github.com/nikitadurasov/masksembles
 
15
  pandas
16
  bmi_topography
17
  earthpy
18
+ geographiclib
19
  git+http://github.com/nikitadurasov/masksembles