Spaces:
Running
Running
File size: 10,106 Bytes
8aec19e 1b82d4c a0d1776 ae495a3 1b82d4c 3a7ead9 6fe5041 8e698eb 3a7ead9 8e698eb 8ef9348 b4c6c2b 6fe5041 1b82d4c 09305ff 1b82d4c 09305ff 1b82d4c a0d1776 1b82d4c 8aec19e 1b82d4c 8aec19e 1b82d4c 8ef9348 09305ff 1b82d4c a0d1776 ae495a3 d6186c5 8ef9348 a0d1776 1b82d4c ae495a3 1b82d4c ae495a3 8ef9348 ae495a3 1b82d4c ae495a3 1b82d4c 8ef9348 ae495a3 1b82d4c ab295c7 1b82d4c 8ef9348 1b82d4c ab295c7 8ef9348 ab295c7 a0d1776 8aec19e 6fe5041 8aec19e ae495a3 b4720c2 ae495a3 a7f1695 f9b322e a7f1695 6fe5041 1bf5677 b4720c2 ae495a3 8aec19e 8e698eb 8aec19e a0d1776 8ef9348 8e698eb 8ef9348 8e698eb a0d1776 8ef9348 a0d1776 1b82d4c ae495a3 f9b322e a0d1776 1b82d4c 8e698eb 8aec19e 1b82d4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import os
import openai
from auto_backgrounds import generate_backgrounds, fake_generator, generate_draft
from utils.file_operations import hash_name
# note: App白屏bug:允许第三方cookie
# todo:
# 6. get logs when the procedure is not completed. *
# 7. 自己的文件库; 更多的prompts
# 8. Decide on how to generate the main part of a paper * (Langchain/AutoGPT
# 9. Load .bibtex file to generate a pre-defined references list. *
# 1. 把paper改成纯JSON?
# 2. 实现别的功能
# future:
# 8. Change prompts to langchain
# 4. add auto_polishing function
# 12. Change link to more appealing color # after the website is built;
# 1. Check if there are any duplicated citations
# 2. Remove potential thebibliography and bibitem in .tex file
openai_key = os.getenv("OPENAI_API_KEY")
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
if access_key_id is None or secret_access_key is None:
print("Access keys are not provided. Outputs cannot be saved to AWS Cloud Storage.\n")
IS_CACHE_AVAILABLE = False
else:
IS_CACHE_AVAILABLE = True
if openai_key is None:
print("OPENAI_API_KEY is not found in environment variables. The output may not be generated.\n")
IS_OPENAI_API_KEY_AVAILABLE = False
else:
openai.api_key = openai_key
try:
openai.Model.list()
IS_OPENAI_API_KEY_AVAILABLE = True
except Exception as e:
IS_OPENAI_API_KEY_AVAILABLE = False
def clear_inputs(text1, text2):
return "", ""
def wrapped_generator(paper_title, paper_description, openai_api_key=None,
template="ICLR2022",
cache_mode=IS_CACHE_AVAILABLE, generator=None):
# if `cache_mode` is True, then follow the following steps:
# check if "title"+"description" have been generated before
# if so, download from the cloud storage, return it
# if not, generate the result.
if generator is None:
# todo: add a Dropdown to select which generator to use.
# generator = generate_backgrounds
generator = generate_draft
# generator = fake_generator
if openai_api_key is not None:
openai.api_key = openai_api_key
openai.Model.list()
if cache_mode:
from utils.storage import list_all_files, download_file, upload_file
# check if "title"+"description" have been generated before
input_dict = {"title": paper_title, "description": paper_description,
"generator": "generate_draft"} # todo: modify here also
file_name = hash_name(input_dict) + ".zip"
file_list = list_all_files()
# print(f"{file_name} will be generated. Check the file list {file_list}")
if file_name in file_list:
# download from the cloud storage, return it
download_file(file_name)
return file_name
else:
# generate the result.
# output = fake_generate_backgrounds(title, description, openai_key)
# todo: use `generator` to control which function to use.
output = generator(paper_title, paper_description, template, "gpt-4")
upload_file(output)
return output
else:
# output = fake_generate_backgrounds(title, description, openai_key)
output = generator(paper_title, paper_description, template, "gpt-4")
return output
theme = gr.themes.Default(font=gr.themes.GoogleFont("Questrial"))
# .set(
# background_fill_primary='#E5E4E2',
# background_fill_secondary = '#F6F6F6',
# button_primary_background_fill="#281A39"
# )
with gr.Blocks(theme=theme) as demo:
gr.Markdown('''
# Auto-Draft: 文献整理辅助工具
本Demo提供对[Auto-Draft](https://github.com/CCCBora/auto-draft)的auto_draft功能的测试。通过输入想要生成的论文名称(比如Playing atari with deep reinforcement learning),即可由AI辅助生成论文模板.
***2023-05-03 Update***: 在公开版本中为大家提供了输入OpenAI API Key的地址, 如果有GPT-4的API KEY的话可以在这里体验!
在这个Huggingface Organization里也提供一定额度的免费体验: [AUTO-ACADEMIC](https://huggingface.co/organizations/auto-academic/share/HPjgazDSlkwLNCWKiAiZoYtXaJIatkWDYM).
如果有更多想法和建议欢迎加入QQ群里交流, 如果我在Space里更新了Key我会第一时间通知大家. 群号: ***249738228***.
## 用法
输入想要生成的论文名称(比如Playing Atari with Deep Reinforcement Learning), 点击Submit, 等待大概十分钟, 下载.zip格式的输出,在Overleaf上编译浏览.
''')
with gr.Row():
with gr.Column(scale=2):
key = gr.Textbox(value=openai_key, lines=1, max_lines=1, label="OpenAI Key",
visible=not IS_OPENAI_API_KEY_AVAILABLE)
# generator = gr.Dropdown(choices=["学术论文", "文献总结"], value="文献总结",
# label="Selection", info="目前支持生成'学术论文'和'文献总结'.", interactive=True)
# 每个功能做一个tab
with gr.Tab("学术论文"):
title = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
label="Title", info="论文标题")
with gr.Accordion("高级设置", open=False):
description_pp = gr.Textbox(lines=5, label="Description (Optional)", visible=True,
info="对希望生成的论文的一些描述. 包括这篇论文的创新点, 主要贡献, 等.")
interactive = False
with gr.Row():
with gr.Column():
gr.Markdown('''
Upload .bib file (Optional)
通过上传.bib文件来控制GPT-4模型必须参考哪些文献.
''')
bibtex_file = gr.File(label="Upload .bib file", file_types=["text"],
interactive=interactive)
with gr.Column():
search_engine = gr.Dropdown(label="Search Engine",
choices=["ArXiv", "Semantic Scholar", "Google Scholar", "None"],
value= "Semantic Scholar",
interactive=interactive,
info="用于决定GPT-4用什么搜索引擎来搜索文献. 选择None的时候仅参考给定文献.")
tldr = gr.Checkbox(value=True, label="TLDR;",
info="选择此筐表示将使用Semantic Scholar的TLDR作为文献的总结.",
interactive = interactive),
use_cache = gr.Checkbox(label="总是重新生成",
info="选择此筐表示将不会读取已经生成好的文章.",
interactive = interactive)
with gr.Row():
clear_button_pp = gr.Button("Clear")
submit_button_pp = gr.Button("Submit", variant="primary")
with gr.Tab("文献综述"):
gr.Markdown('''
<h1 style="text-align: center;">Coming soon!</h1>
''')
# topic = gr.Textbox(value="Deep Reinforcement Learning", lines=1, max_lines=1,
# label="Topic", info="文献主题")
# with gr.Accordion("Advanced Setting"):
# description_lr = gr.Textbox(lines=5, label="Description (Optional)", visible=True,
# info="对希望生成的综述的一些描述. 包括这篇论文的创新点, 主要贡献, 等.")
# with gr.Row():
# clear_button_lr = gr.Button("Clear")
# submit_button_lr = gr.Button("Submit", variant="primary")
with gr.Tab("论文润色"):
gr.Markdown('''
<h1 style="text-align: center;">Coming soon!</h1>
''')
with gr.Tab("帮我想想该写什么论文!"):
gr.Markdown('''
<h1 style="text-align: center;">Coming soon!</h1>
''')
with gr.Column(scale=1):
style_mapping = {True: "color:white;background-color:green",
False: "color:white;background-color:red"} # todo: to match website's style
availability_mapping = {True: "AVAILABLE", False: "NOT AVAILABLE"}
gr.Markdown(f'''## Huggingface Space Status
当`OpenAI API`显示AVAILABLE的时候这个Space可以直接使用.
当`OpenAI API`显示NOT AVAILABLE的时候这个Space可以通过在左侧输入OPENAI KEY来使用. 需要有GPT-4的API权限.
当`Cache`显示AVAILABLE的时候, 所有的输入和输出会被备份到我的云储存中. 显示NOT AVAILABLE的时候不影响实际使用.
`OpenAI API`: <span style="{style_mapping[IS_OPENAI_API_KEY_AVAILABLE]}">{availability_mapping[IS_OPENAI_API_KEY_AVAILABLE]}</span>. `Cache`: <span style="{style_mapping[IS_CACHE_AVAILABLE]}">{availability_mapping[IS_CACHE_AVAILABLE]}</span>.''')
file_output = gr.File(label="Output")
clear_button_pp.click(fn=clear_inputs, inputs=[title, description_pp], outputs=[title, description_pp])
submit_button_pp.click(fn=wrapped_generator, inputs=[title, description_pp, key], outputs=file_output)
demo.queue(concurrency_count=1, max_size=5, api_open=False)
demo.launch()
|