Spaces:
Running
Running
sc_ma
commited on
Commit
·
ae495a3
1
Parent(s):
6fe5041
Bug fix. Put all generators in auto_backgrounds.py.
Browse files- app.py +23 -16
- auto_backgrounds.py +37 -5
- auto_draft.py +145 -145
- requirements.txt +0 -0
- section_generator.py +39 -2
- utils/storage.py +38 -31
app.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import openai
|
4 |
-
from auto_backgrounds import generate_backgrounds, fake_generator
|
5 |
-
from
|
6 |
|
7 |
# todo:
|
8 |
# 1. update README.md and introduction in app.py
|
9 |
# 2. update QQ group and Organization cards
|
10 |
-
# 3. update autodraft.py to generate a whole paper
|
11 |
# 4. add auto_polishing function
|
|
|
12 |
|
13 |
openai_key = os.getenv("OPENAI_API_KEY")
|
14 |
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
@@ -44,16 +44,22 @@ def wrapped_generator(title, description, openai_key = None,
|
|
44 |
# if so, download from the cloud storage, return it
|
45 |
# if not, generate the result.
|
46 |
if generator is None:
|
47 |
-
generator
|
|
|
|
|
|
|
48 |
if openai_key is not None:
|
49 |
openai.api_key = openai_key
|
50 |
openai.Model.list()
|
51 |
|
52 |
if cache_mode:
|
53 |
-
from utils.storage import list_all_files,
|
54 |
# check if "title"+"description" have been generated before
|
55 |
-
|
|
|
|
|
56 |
file_list = list_all_files()
|
|
|
57 |
if file_name in file_list:
|
58 |
# download from the cloud storage, return it
|
59 |
download_file(file_name)
|
@@ -61,12 +67,12 @@ def wrapped_generator(title, description, openai_key = None,
|
|
61 |
else:
|
62 |
# generate the result.
|
63 |
# output = fake_generate_backgrounds(title, description, openai_key) # todo: use `generator` to control which function to use.
|
64 |
-
output =
|
65 |
-
upload_file(
|
66 |
return output
|
67 |
else:
|
68 |
# output = fake_generate_backgrounds(title, description, openai_key)
|
69 |
-
output =
|
70 |
return output
|
71 |
|
72 |
|
@@ -80,21 +86,22 @@ with gr.Blocks(theme=theme) as demo:
|
|
80 |
gr.Markdown('''
|
81 |
# Auto-Draft: 文献整理辅助工具
|
82 |
|
83 |
-
本Demo提供对[Auto-Draft](https://github.com/CCCBora/auto-draft)的
|
84 |
|
85 |
-
***2023-05-03 Update***:
|
86 |
我也会在近期提供一定的免费体验在这个Huggingface Organization里: [AUTO-ACADEMIC](https://huggingface.co/organizations/auto-academic/share/HPjgazDSlkwLNCWKiAiZoYtXaJIatkWDYM).
|
87 |
如果有更多想法和建议欢迎加入QQ群里交流, 如果我在Space里更新了Key我会第一时间通知大家. 群号: ***249738228***.
|
88 |
|
89 |
## 用法
|
90 |
|
91 |
-
|
92 |
''')
|
93 |
with gr.Row():
|
94 |
with gr.Column(scale=2):
|
95 |
key = gr.Textbox(value=openai_key, lines=1, max_lines=1, label="OpenAI Key", visible=not IS_OPENAI_API_KEY_AVAILABLE)
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
with gr.Row():
|
100 |
clear_button = gr.Button("Clear")
|
@@ -104,8 +111,8 @@ with gr.Blocks(theme=theme) as demo:
|
|
104 |
availability_mapping = {True: "AVAILABLE", False: "NOT AVAILABLE"}
|
105 |
gr.Markdown(f'''## Huggingface Space Status
|
106 |
当`OpenAI API`显示AVAILABLE的时候这个Space可以直接使用.
|
107 |
-
当`OpenAI API`显示NOT AVAILABLE的时候这个Space可以通过在左侧输入OPENAI KEY来使用. 需要有GPT-4的API
|
108 |
-
当`Cache`显示AVAILABLE的时候, 所有的输入和输出会被备份到我的云储存中. 显示NOT AVAILABLE
|
109 |
`OpenAI API`: <span style="{style_mapping[IS_OPENAI_API_KEY_AVAILABLE]}">{availability_mapping[IS_OPENAI_API_KEY_AVAILABLE]}</span>. `Cache`: <span style="{style_mapping[IS_CACHE_AVAILABLE]}">{availability_mapping[IS_CACHE_AVAILABLE]}</span>.''')
|
110 |
file_output = gr.File(label="Output")
|
111 |
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import openai
|
4 |
+
from auto_backgrounds import generate_backgrounds, fake_generator, generate_draft
|
5 |
+
from utils.file_operations import hash_name
|
6 |
|
7 |
# todo:
|
8 |
# 1. update README.md and introduction in app.py
|
9 |
# 2. update QQ group and Organization cards
|
|
|
10 |
# 4. add auto_polishing function
|
11 |
+
# 5. Use Completion to substitute some simple task (including: writing abstract, conclusion, generate keywords, generate figures...)
|
12 |
|
13 |
openai_key = os.getenv("OPENAI_API_KEY")
|
14 |
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
|
|
44 |
# if so, download from the cloud storage, return it
|
45 |
# if not, generate the result.
|
46 |
if generator is None:
|
47 |
+
# todo: add a Dropdown to select which generator to use.
|
48 |
+
# generator = generate_backgrounds
|
49 |
+
# generator = generate_draft
|
50 |
+
generator = fake_generator
|
51 |
if openai_key is not None:
|
52 |
openai.api_key = openai_key
|
53 |
openai.Model.list()
|
54 |
|
55 |
if cache_mode:
|
56 |
+
from utils.storage import list_all_files, download_file, upload_file
|
57 |
# check if "title"+"description" have been generated before
|
58 |
+
|
59 |
+
input_dict = {"title": title, "description": description, "generator": "generate_draft"} #todo: modify here also
|
60 |
+
file_name = hash_name(input_dict) + ".zip"
|
61 |
file_list = list_all_files()
|
62 |
+
# print(f"{file_name} will be generated. Check the file list {file_list}")
|
63 |
if file_name in file_list:
|
64 |
# download from the cloud storage, return it
|
65 |
download_file(file_name)
|
|
|
67 |
else:
|
68 |
# generate the result.
|
69 |
# output = fake_generate_backgrounds(title, description, openai_key) # todo: use `generator` to control which function to use.
|
70 |
+
output = generator(title, description, template, "gpt-4")
|
71 |
+
upload_file(output)
|
72 |
return output
|
73 |
else:
|
74 |
# output = fake_generate_backgrounds(title, description, openai_key)
|
75 |
+
output = generator(title, description, template, "gpt-4")
|
76 |
return output
|
77 |
|
78 |
|
|
|
86 |
gr.Markdown('''
|
87 |
# Auto-Draft: 文献整理辅助工具
|
88 |
|
89 |
+
本Demo提供对[Auto-Draft](https://github.com/CCCBora/auto-draft)的auto_draft功能的测试。通过输入想要生成的论文名称(比如Playing atari with deep reinforcement learning),即可由AI辅助生成论文模板.
|
90 |
|
91 |
+
***2023-05-03 Update***: 在公开版本中为大家提供了输入OpenAI API Key的地址, 如果有GPT-4的API KEY的话可以在这里体验!
|
92 |
我也会在近期提供一定的免费体验在这个Huggingface Organization里: [AUTO-ACADEMIC](https://huggingface.co/organizations/auto-academic/share/HPjgazDSlkwLNCWKiAiZoYtXaJIatkWDYM).
|
93 |
如果有更多想法和建议欢迎加入QQ群里交流, 如果我在Space里更新了Key我会第一时间通知大家. 群号: ***249738228***.
|
94 |
|
95 |
## 用法
|
96 |
|
97 |
+
输入想要生成的论文名称(比如Playing Atari with Deep Reinforcement Learning), 点击Submit, 等待大概十分钟, 下载.zip格式的输出,在Overleaf上编译浏览.
|
98 |
''')
|
99 |
with gr.Row():
|
100 |
with gr.Column(scale=2):
|
101 |
key = gr.Textbox(value=openai_key, lines=1, max_lines=1, label="OpenAI Key", visible=not IS_OPENAI_API_KEY_AVAILABLE)
|
102 |
+
# generator = gr.Dropdown(choices=["学术论文", "文献总结"], value="文献总结", label="Selection", info="目前支持生成'学术论文'和'文献总结'.", interactive=True)
|
103 |
+
title = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1, label="Title", info="论文标题")
|
104 |
+
description = gr.Textbox(lines=5, label="Description (Optional)", visible=False)
|
105 |
|
106 |
with gr.Row():
|
107 |
clear_button = gr.Button("Clear")
|
|
|
111 |
availability_mapping = {True: "AVAILABLE", False: "NOT AVAILABLE"}
|
112 |
gr.Markdown(f'''## Huggingface Space Status
|
113 |
当`OpenAI API`显示AVAILABLE的时候这个Space可以直接使用.
|
114 |
+
当`OpenAI API`显示NOT AVAILABLE的时候这个Space可以通过在左侧输入OPENAI KEY来使用. 需要有GPT-4的API权限.
|
115 |
+
当`Cache`显示AVAILABLE的时候, 所有的输入和输出会被备份到我的云储存中. 显示NOT AVAILABLE的时候不影响实际使用.
|
116 |
`OpenAI API`: <span style="{style_mapping[IS_OPENAI_API_KEY_AVAILABLE]}">{availability_mapping[IS_OPENAI_API_KEY_AVAILABLE]}</span>. `Cache`: <span style="{style_mapping[IS_CACHE_AVAILABLE]}">{availability_mapping[IS_CACHE_AVAILABLE]}</span>.''')
|
117 |
file_output = gr.File(label="Output")
|
118 |
|
auto_backgrounds.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
from utils.references import References
|
2 |
from utils.file_operations import hash_name, make_archive, copy_templates
|
3 |
-
from section_generator import section_generation_bg, keywords_generation
|
4 |
import logging
|
5 |
|
6 |
TOTAL_TOKENS = 0
|
7 |
TOTAL_PROMPTS_TOKENS = 0
|
8 |
TOTAL_COMPLETION_TOKENS = 0
|
9 |
|
|
|
10 |
def log_usage(usage, generating_target, print_out=True):
|
11 |
global TOTAL_TOKENS
|
12 |
global TOTAL_PROMPTS_TOKENS
|
@@ -26,7 +27,7 @@ def log_usage(usage, generating_target, print_out=True):
|
|
26 |
print(message)
|
27 |
logging.info(message)
|
28 |
|
29 |
-
def
|
30 |
paper = {}
|
31 |
paper_body = {}
|
32 |
|
@@ -41,9 +42,9 @@ def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-
|
|
41 |
print(f"keywords: {keywords}")
|
42 |
log_usage(usage, "keywords")
|
43 |
|
44 |
-
ref = References(load_papers
|
45 |
ref.collect_papers(keywords, method="arxiv")
|
46 |
-
all_paper_ids = ref.to_bibtex(bibtex_path)
|
47 |
|
48 |
print(f"The paper information has been initialized. References are saved to {bibtex_path}.")
|
49 |
|
@@ -52,6 +53,12 @@ def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-
|
|
52 |
paper["references"] = ref.to_prompts()
|
53 |
paper["body"] = paper_body
|
54 |
paper["bibtex"] = bibtex_path
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
for section in ["introduction", "related works", "backgrounds"]:
|
57 |
try:
|
@@ -70,6 +77,31 @@ def fake_generator(title, description="", template="ICLR2022", model="gpt-4"):
|
|
70 |
"""
|
71 |
This function is used to test the whole pipeline without calling OpenAI API.
|
72 |
"""
|
73 |
-
input_dict = {"title": title, "description": description, "generator": "
|
74 |
filename = hash_name(input_dict) + ".zip"
|
75 |
return make_archive("sample-output.pdf", filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from utils.references import References
|
2 |
from utils.file_operations import hash_name, make_archive, copy_templates
|
3 |
+
from section_generator import section_generation_bg, keywords_generation, figures_generation, section_generation
|
4 |
import logging
|
5 |
|
6 |
TOTAL_TOKENS = 0
|
7 |
TOTAL_PROMPTS_TOKENS = 0
|
8 |
TOTAL_COMPLETION_TOKENS = 0
|
9 |
|
10 |
+
|
11 |
def log_usage(usage, generating_target, print_out=True):
|
12 |
global TOTAL_TOKENS
|
13 |
global TOTAL_PROMPTS_TOKENS
|
|
|
27 |
print(message)
|
28 |
logging.info(message)
|
29 |
|
30 |
+
def _generation_setup(title, description="", template="ICLR2022", model="gpt-4"):
|
31 |
paper = {}
|
32 |
paper_body = {}
|
33 |
|
|
|
42 |
print(f"keywords: {keywords}")
|
43 |
log_usage(usage, "keywords")
|
44 |
|
45 |
+
ref = References(load_papers="")
|
46 |
ref.collect_papers(keywords, method="arxiv")
|
47 |
+
all_paper_ids = ref.to_bibtex(bibtex_path) # todo: this will used to check if all citations are in this list
|
48 |
|
49 |
print(f"The paper information has been initialized. References are saved to {bibtex_path}.")
|
50 |
|
|
|
53 |
paper["references"] = ref.to_prompts()
|
54 |
paper["body"] = paper_body
|
55 |
paper["bibtex"] = bibtex_path
|
56 |
+
return paper, destination_folder, all_paper_ids
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"):
|
61 |
+
paper, destination_folder, _ = _generation_setup(title, description, template, model)
|
62 |
|
63 |
for section in ["introduction", "related works", "backgrounds"]:
|
64 |
try:
|
|
|
77 |
"""
|
78 |
This function is used to test the whole pipeline without calling OpenAI API.
|
79 |
"""
|
80 |
+
input_dict = {"title": title, "description": description, "generator": "generate_draft"}
|
81 |
filename = hash_name(input_dict) + ".zip"
|
82 |
return make_archive("sample-output.pdf", filename)
|
83 |
+
|
84 |
+
|
85 |
+
def generate_draft(title, description="", template="ICLR2022", model="gpt-4"):
|
86 |
+
paper, destination_folder, _ = _generation_setup(title, description, template, model)
|
87 |
+
|
88 |
+
print("Generating figures ...")
|
89 |
+
usage = figures_generation(paper, destination_folder, model="gpt-3.5-turbo")
|
90 |
+
# todo: use `figures_generation` function to complete remainings
|
91 |
+
# prompts = generate_experiments_prompts(paper)
|
92 |
+
# gpt_response, usage = get_responses(prompts, model)
|
93 |
+
# list_of_methods = list(extract_json(gpt_response))
|
94 |
+
log_usage(usage, "figures")
|
95 |
+
# generate_random_figures(list_of_methods, save_to_path + "comparison.png")
|
96 |
+
|
97 |
+
# for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]:
|
98 |
+
for section in ["introduction", "related works", "backgrounds", "experiments", "conclusion", "abstract"]:
|
99 |
+
try:
|
100 |
+
usage = section_generation(paper, section, destination_folder, model=model)
|
101 |
+
log_usage(usage, section)
|
102 |
+
except Exception as e:
|
103 |
+
print(f"Failed to generate {section} due to the error: {e}")
|
104 |
+
|
105 |
+
input_dict = {"title": title, "description": description, "generator": "generate_draft"}
|
106 |
+
filename = hash_name(input_dict) + ".zip"
|
107 |
+
return make_archive(destination_folder, filename)
|
auto_draft.py
CHANGED
@@ -1,145 +1,145 @@
|
|
1 |
-
from utils.references import References
|
2 |
-
from utils.prompts import generate_paper_prompts, generate_keywords_prompts, generate_experiments_prompts
|
3 |
-
from utils.gpt_interaction import get_responses, extract_responses, extract_keywords, extract_json
|
4 |
-
from utils.tex_processing import replace_title
|
5 |
-
from utils.figures import generate_random_figures
|
6 |
-
import datetime
|
7 |
-
import shutil
|
8 |
-
import time
|
9 |
-
import logging
|
10 |
-
import os
|
11 |
-
|
12 |
-
TOTAL_TOKENS = 0
|
13 |
-
TOTAL_PROMPTS_TOKENS = 0
|
14 |
-
TOTAL_COMPLETION_TOKENS = 0
|
15 |
-
|
16 |
-
def make_archive(source, destination):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
def log_usage(usage, generating_target, print_out=True):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
def pipeline(paper, section, save_to_path, model):
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
def generate_draft(title, description="", template="ICLR2022", model="gpt-4"):
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
if __name__ == "__main__":
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
1 |
+
# from utils.references import References
|
2 |
+
# from utils.prompts import generate_paper_prompts, generate_keywords_prompts, generate_experiments_prompts
|
3 |
+
# from utils.gpt_interaction import get_responses, extract_responses, extract_keywords, extract_json
|
4 |
+
# from utils.tex_processing import replace_title
|
5 |
+
# from utils.figures import generate_random_figures
|
6 |
+
# import datetime
|
7 |
+
# import shutil
|
8 |
+
# import time
|
9 |
+
# import logging
|
10 |
+
# import os
|
11 |
+
#
|
12 |
+
# TOTAL_TOKENS = 0
|
13 |
+
# TOTAL_PROMPTS_TOKENS = 0
|
14 |
+
# TOTAL_COMPLETION_TOKENS = 0
|
15 |
+
#
|
16 |
+
# def make_archive(source, destination):
|
17 |
+
# base = os.path.basename(destination)
|
18 |
+
# name = base.split('.')[0]
|
19 |
+
# format = base.split('.')[1]
|
20 |
+
# archive_from = os.path.dirname(source)
|
21 |
+
# archive_to = os.path.basename(source.strip(os.sep))
|
22 |
+
# shutil.make_archive(name, format, archive_from, archive_to)
|
23 |
+
# shutil.move('%s.%s'%(name,format), destination)
|
24 |
+
# return destination
|
25 |
+
#
|
26 |
+
#
|
27 |
+
# def log_usage(usage, generating_target, print_out=True):
|
28 |
+
# global TOTAL_TOKENS
|
29 |
+
# global TOTAL_PROMPTS_TOKENS
|
30 |
+
# global TOTAL_COMPLETION_TOKENS
|
31 |
+
#
|
32 |
+
# prompts_tokens = usage['prompt_tokens']
|
33 |
+
# completion_tokens = usage['completion_tokens']
|
34 |
+
# total_tokens = usage['total_tokens']
|
35 |
+
#
|
36 |
+
# TOTAL_TOKENS += total_tokens
|
37 |
+
# TOTAL_PROMPTS_TOKENS += prompts_tokens
|
38 |
+
# TOTAL_COMPLETION_TOKENS += completion_tokens
|
39 |
+
#
|
40 |
+
# message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \
|
41 |
+
# f"{TOTAL_TOKENS} tokens have been used in total."
|
42 |
+
# if print_out:
|
43 |
+
# print(message)
|
44 |
+
# logging.info(message)
|
45 |
+
#
|
46 |
+
# def pipeline(paper, section, save_to_path, model):
|
47 |
+
# """
|
48 |
+
# The main pipeline of generating a section.
|
49 |
+
# 1. Generate prompts.
|
50 |
+
# 2. Get responses from AI assistant.
|
51 |
+
# 3. Extract the section text.
|
52 |
+
# 4. Save the text to .tex file.
|
53 |
+
# :return usage
|
54 |
+
# """
|
55 |
+
# print(f"Generating {section}...")
|
56 |
+
# prompts = generate_paper_prompts(paper, section)
|
57 |
+
# gpt_response, usage = get_responses(prompts, model)
|
58 |
+
# output = extract_responses(gpt_response)
|
59 |
+
# paper["body"][section] = output
|
60 |
+
# tex_file = save_to_path + f"{section}.tex"
|
61 |
+
# if section == "abstract":
|
62 |
+
# with open(tex_file, "w") as f:
|
63 |
+
# f.write(r"\begin{abstract}")
|
64 |
+
# with open(tex_file, "a") as f:
|
65 |
+
# f.write(output)
|
66 |
+
# with open(tex_file, "a") as f:
|
67 |
+
# f.write(r"\end{abstract}")
|
68 |
+
# else:
|
69 |
+
# with open(tex_file, "w") as f:
|
70 |
+
# f.write(f"\section{{{section}}}\n")
|
71 |
+
# with open(tex_file, "a") as f:
|
72 |
+
# f.write(output)
|
73 |
+
# time.sleep(5)
|
74 |
+
# print(f"{section} has been generated. Saved to {tex_file}.")
|
75 |
+
# return usage
|
76 |
+
#
|
77 |
+
#
|
78 |
+
#
|
79 |
+
# def generate_draft(title, description="", template="ICLR2022", model="gpt-4"):
|
80 |
+
# """
|
81 |
+
# The main pipeline of generating a paper.
|
82 |
+
# 1. Copy everything to the output folder.
|
83 |
+
# 2. Create references.
|
84 |
+
# 3. Generate each section using `pipeline`.
|
85 |
+
# 4. Post-processing: check common errors, fill the title, ...
|
86 |
+
# """
|
87 |
+
# paper = {}
|
88 |
+
# paper_body = {}
|
89 |
+
#
|
90 |
+
# # Create a copy in the outputs folder.
|
91 |
+
# # todo: use copy_templates function instead.
|
92 |
+
# now = datetime.datetime.now()
|
93 |
+
# target_name = now.strftime("outputs_%Y%m%d_%H%M%S")
|
94 |
+
# source_folder = f"latex_templates/{template}"
|
95 |
+
# destination_folder = f"outputs/{target_name}"
|
96 |
+
# shutil.copytree(source_folder, destination_folder)
|
97 |
+
#
|
98 |
+
# bibtex_path = destination_folder + "/ref.bib"
|
99 |
+
# save_to_path = destination_folder +"/"
|
100 |
+
# replace_title(save_to_path, title)
|
101 |
+
# logging.basicConfig( level=logging.INFO, filename=save_to_path+"generation.log")
|
102 |
+
#
|
103 |
+
# # Generate keywords and references
|
104 |
+
# print("Initialize the paper information ...")
|
105 |
+
# prompts = generate_keywords_prompts(title, description)
|
106 |
+
# gpt_response, usage = get_responses(prompts, model)
|
107 |
+
# keywords = extract_keywords(gpt_response)
|
108 |
+
# log_usage(usage, "keywords")
|
109 |
+
# ref = References(load_papers = "") #todo: allow users to upload bibfile.
|
110 |
+
# ref.collect_papers(keywords, method="arxiv") #todo: add more methods to find related papers
|
111 |
+
# all_paper_ids = ref.to_bibtex(bibtex_path) #todo: this will used to check if all citations are in this list
|
112 |
+
#
|
113 |
+
# print(f"The paper information has been initialized. References are saved to {bibtex_path}.")
|
114 |
+
#
|
115 |
+
# paper["title"] = title
|
116 |
+
# paper["description"] = description
|
117 |
+
# paper["references"] = ref.to_prompts() #todo: see if this prompts can be compressed.
|
118 |
+
# paper["body"] = paper_body
|
119 |
+
# paper["bibtex"] = bibtex_path
|
120 |
+
#
|
121 |
+
# print("Generating figures ...")
|
122 |
+
# prompts = generate_experiments_prompts(paper)
|
123 |
+
# gpt_response, usage = get_responses(prompts, model)
|
124 |
+
# list_of_methods = list(extract_json(gpt_response))
|
125 |
+
# log_usage(usage, "figures")
|
126 |
+
# generate_random_figures(list_of_methods, save_to_path + "comparison.png")
|
127 |
+
#
|
128 |
+
# for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]:
|
129 |
+
# try:
|
130 |
+
# usage = pipeline(paper, section, save_to_path, model=model)
|
131 |
+
# log_usage(usage, section)
|
132 |
+
# except Exception as e:
|
133 |
+
# print(f"Failed to generate {section} due to the error: {e}")
|
134 |
+
# print(f"The paper {title} has been generated. Saved to {save_to_path}.")
|
135 |
+
# return make_archive(destination_folder, "output.zip")
|
136 |
+
#
|
137 |
+
# if __name__ == "__main__":
|
138 |
+
# # title = "Training Adversarial Generative Neural Network with Adaptive Dropout Rate"
|
139 |
+
# title = "Playing Atari Game with Deep Reinforcement Learning"
|
140 |
+
# description = ""
|
141 |
+
# template = "ICLR2022"
|
142 |
+
# model = "gpt-4"
|
143 |
+
# # model = "gpt-3.5-turbo"
|
144 |
+
#
|
145 |
+
# generate_draft(title, description, template, model)
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|
section_generator.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from utils.prompts import generate_paper_prompts, generate_keywords_prompts, generate_experiments_prompts, generate_bg_summary_prompts
|
2 |
from utils.gpt_interaction import get_responses, extract_responses, extract_keywords, extract_json
|
|
|
3 |
import time
|
4 |
import os
|
5 |
|
@@ -43,6 +44,38 @@ def section_generation_bg(paper, section, save_to_path, model):
|
|
43 |
return usage
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def keywords_generation(input_dict, model):
|
47 |
title = input_dict.get("title")
|
48 |
description = input_dict.get("description", "")
|
@@ -54,5 +87,9 @@ def keywords_generation(input_dict, model):
|
|
54 |
else:
|
55 |
raise ValueError("`input_dict` must include the key 'title'.")
|
56 |
|
57 |
-
def figures_generation():
|
58 |
-
|
|
|
|
|
|
|
|
|
|
1 |
from utils.prompts import generate_paper_prompts, generate_keywords_prompts, generate_experiments_prompts, generate_bg_summary_prompts
|
2 |
from utils.gpt_interaction import get_responses, extract_responses, extract_keywords, extract_json
|
3 |
+
from utils.figures import generate_random_figures
|
4 |
import time
|
5 |
import os
|
6 |
|
|
|
44 |
return usage
|
45 |
|
46 |
|
47 |
+
def section_generation(paper, section, save_to_path, model):
|
48 |
+
"""
|
49 |
+
The main pipeline of generating a section.
|
50 |
+
1. Generate prompts.
|
51 |
+
2. Get responses from AI assistant.
|
52 |
+
3. Extract the section text.
|
53 |
+
4. Save the text to .tex file.
|
54 |
+
:return usage
|
55 |
+
"""
|
56 |
+
print(f"Generating {section}...")
|
57 |
+
prompts = generate_paper_prompts(paper, section)
|
58 |
+
gpt_response, usage = get_responses(prompts, model)
|
59 |
+
output = extract_responses(gpt_response)
|
60 |
+
paper["body"][section] = output
|
61 |
+
tex_file = os.path.join(save_to_path, f"{section}.tex")
|
62 |
+
# tex_file = save_to_path + f"/{section}.tex"
|
63 |
+
if section == "abstract":
|
64 |
+
with open(tex_file, "w") as f:
|
65 |
+
f.write(r"\begin{abstract}")
|
66 |
+
with open(tex_file, "a") as f:
|
67 |
+
f.write(output)
|
68 |
+
with open(tex_file, "a") as f:
|
69 |
+
f.write(r"\end{abstract}")
|
70 |
+
else:
|
71 |
+
with open(tex_file, "w") as f:
|
72 |
+
f.write(f"\section{{{section.upper()}}}\n")
|
73 |
+
with open(tex_file, "a") as f:
|
74 |
+
f.write(output)
|
75 |
+
# time.sleep(5)
|
76 |
+
print(f"{section} has been generated. Saved to {tex_file}.")
|
77 |
+
return usage
|
78 |
+
|
79 |
def keywords_generation(input_dict, model):
|
80 |
title = input_dict.get("title")
|
81 |
description = input_dict.get("description", "")
|
|
|
87 |
else:
|
88 |
raise ValueError("`input_dict` must include the key 'title'.")
|
89 |
|
90 |
+
def figures_generation(paper, save_to_path, model):
|
91 |
+
prompts = generate_experiments_prompts(paper)
|
92 |
+
gpt_response, usage = get_responses(prompts, model)
|
93 |
+
list_of_methods = list(extract_json(gpt_response))
|
94 |
+
generate_random_figures(list_of_methods, os.path.join(save_to_path, "comparison.png"))
|
95 |
+
return usage
|
utils/storage.py
CHANGED
@@ -1,45 +1,52 @@
|
|
1 |
# This script `storage.py` is used to handle the cloud storage.
|
2 |
# `upload_file`:
|
|
|
|
|
3 |
# `list_all_files`:
|
|
|
4 |
# `download_file`:
|
|
|
5 |
|
6 |
import os
|
7 |
import boto3
|
8 |
|
9 |
-
|
10 |
-
secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
|
11 |
-
bucket_name = "hf-storage"
|
12 |
|
13 |
-
|
|
|
|
|
14 |
session = boto3.Session(
|
15 |
aws_access_key_id=access_key_id,
|
16 |
aws_secret_access_key=secret_access_key,
|
17 |
)
|
18 |
-
|
19 |
s3 = session.resource('s3')
|
20 |
-
bucket = s3.Bucket(
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
1 |
# This script `storage.py` is used to handle the cloud storage.
|
2 |
# `upload_file`:
|
3 |
+
# Function to upload a local file to the specified S3 bucket.
|
4 |
+
# If the target_name is not specified, it will use the file_name as the object key.
|
5 |
# `list_all_files`:
|
6 |
+
# Function to list all the files in the specified S3 bucket.
|
7 |
# `download_file`:
|
8 |
+
# Function to download a file from the specified S3 bucket to the local machine using the specified file_name.
|
9 |
|
10 |
import os
|
11 |
import boto3
|
12 |
|
13 |
+
BUCKET_NAME = "hf-storage"
|
|
|
|
|
14 |
|
15 |
+
def get_client():
|
16 |
+
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
17 |
+
secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
|
18 |
session = boto3.Session(
|
19 |
aws_access_key_id=access_key_id,
|
20 |
aws_secret_access_key=secret_access_key,
|
21 |
)
|
|
|
22 |
s3 = session.resource('s3')
|
23 |
+
bucket = s3.Bucket(BUCKET_NAME)
|
24 |
+
return s3, bucket
|
25 |
+
|
26 |
+
def upload_file(file_name, target_name=None):
|
27 |
+
s3, _ = get_client()
|
28 |
+
|
29 |
+
if target_name is None:
|
30 |
+
target_name = file_name
|
31 |
+
s3.meta.client.upload_file(Filename=file_name, Bucket=BUCKET_NAME, Key=target_name)
|
32 |
+
print(f"The file {file_name} has been uploaded!")
|
33 |
+
|
34 |
+
|
35 |
+
def list_all_files():
|
36 |
+
_, bucket = get_client()
|
37 |
+
return [obj.key for obj in bucket.objects.all()]
|
38 |
+
|
39 |
+
|
40 |
+
def download_file(file_name):
|
41 |
+
''' Download `file_name` from the bucket.
|
42 |
+
Bucket (str) – The name of the bucket to download from.
|
43 |
+
Key (str) – The name of the key to download from.
|
44 |
+
Filename (str) – The path to the file to download to.
|
45 |
+
'''
|
46 |
+
s3, _ = get_client()
|
47 |
+
s3.meta.client.download_file(Bucket=BUCKET_NAME, Key=file_name, Filename=file_name)
|
48 |
+
print(f"The file {file_name} has been downloaded!")
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
file = "sample-output.pdf"
|
52 |
+
upload_file(file)
|