Spaces:
Running
Running
shaocongma
commited on
Commit
·
8ef9348
1
Parent(s):
3afc671
Fix some tex compiler error.
Browse files- .idea/.gitignore +2 -0
- app.py +32 -26
- auto_backgrounds.py +1 -1
- utils/references.py +29 -15
.idea/.gitignore
CHANGED
@@ -6,3 +6,5 @@
|
|
6 |
/dataSources.local.xml
|
7 |
# Editor-based HTTP Client requests
|
8 |
/httpRequests/
|
|
|
|
|
|
6 |
/dataSources.local.xml
|
7 |
# Editor-based HTTP Client requests
|
8 |
/httpRequests/
|
9 |
+
**/__pycache__
|
10 |
+
**/.idea
|
app.py
CHANGED
@@ -6,18 +6,18 @@ from utils.file_operations import hash_name
|
|
6 |
|
7 |
# note: App白屏bug:允许第三方cookie
|
8 |
# todo:
|
9 |
-
#
|
10 |
-
#
|
11 |
# 5.1 Use GPT 3.5 for abstract, conclusion, ... (or may not)
|
12 |
# 5.2 Use local LLM to generate keywords, figures, ...
|
13 |
# 5.3 Use embedding to find most related papers (find a paper dataset)
|
14 |
# 6. get logs when the procedure is not completed.
|
15 |
# 7. 自己的文件库; 更多的prompts
|
16 |
-
# 8. Change prompts to langchain
|
17 |
-
# 9. some references include &: journal={IEEE Power & Energy Society General Meeting}. Check them when generating it.
|
18 |
-
# 10. some paper ids have : or - in the first word of title; remove them when generating paper id.
|
19 |
# 11. distinguish citep and citet
|
20 |
-
#
|
|
|
|
|
|
|
21 |
|
22 |
openai_key = os.getenv("OPENAI_API_KEY")
|
23 |
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
@@ -40,14 +40,13 @@ else:
|
|
40 |
IS_OPENAI_API_KEY_AVAILABLE = False
|
41 |
|
42 |
|
43 |
-
|
44 |
def clear_inputs(text1, text2):
|
45 |
return "", ""
|
46 |
|
47 |
|
48 |
-
def wrapped_generator(
|
49 |
-
template
|
50 |
-
cache_mode
|
51 |
# if `cache_mode` is True, then follow the following steps:
|
52 |
# check if "title"+"description" have been generated before
|
53 |
# if so, download from the cloud storage, return it
|
@@ -57,15 +56,16 @@ def wrapped_generator(title, description, openai_key = None,
|
|
57 |
# generator = generate_backgrounds
|
58 |
generator = generate_draft
|
59 |
# generator = fake_generator
|
60 |
-
if
|
61 |
-
openai.api_key =
|
62 |
openai.Model.list()
|
63 |
|
64 |
if cache_mode:
|
65 |
from utils.storage import list_all_files, download_file, upload_file
|
66 |
# check if "title"+"description" have been generated before
|
67 |
|
68 |
-
input_dict = {"title":
|
|
|
69 |
file_name = hash_name(input_dict) + ".zip"
|
70 |
file_list = list_all_files()
|
71 |
# print(f"{file_name} will be generated. Check the file list {file_list}")
|
@@ -75,21 +75,23 @@ def wrapped_generator(title, description, openai_key = None,
|
|
75 |
return file_name
|
76 |
else:
|
77 |
# generate the result.
|
78 |
-
# output = fake_generate_backgrounds(title, description, openai_key)
|
79 |
-
|
|
|
80 |
upload_file(output)
|
81 |
return output
|
82 |
else:
|
83 |
# output = fake_generate_backgrounds(title, description, openai_key)
|
84 |
-
output = generator(
|
85 |
return output
|
86 |
|
87 |
|
88 |
-
theme = gr.themes.
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
93 |
|
94 |
with gr.Blocks(theme=theme) as demo:
|
95 |
gr.Markdown('''
|
@@ -107,16 +109,20 @@ with gr.Blocks(theme=theme) as demo:
|
|
107 |
''')
|
108 |
with gr.Row():
|
109 |
with gr.Column(scale=2):
|
110 |
-
key =
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
113 |
description = gr.Textbox(lines=5, label="Description (Optional)", visible=False)
|
114 |
|
115 |
with gr.Row():
|
116 |
clear_button = gr.Button("Clear")
|
117 |
-
submit_button = gr.Button("Submit")
|
118 |
with gr.Column(scale=1):
|
119 |
-
style_mapping = {True: "color:white;background-color:green",
|
|
|
120 |
availability_mapping = {True: "AVAILABLE", False: "NOT AVAILABLE"}
|
121 |
gr.Markdown(f'''## Huggingface Space Status
|
122 |
当`OpenAI API`显示AVAILABLE的时候这个Space可以直接使用.
|
|
|
6 |
|
7 |
# note: App白屏bug:允许第三方cookie
|
8 |
# todo:
|
9 |
+
# 5. Use some simple method for simple tasks
|
10 |
+
# (including: writing abstract, conclusion, generate keywords, generate figures...)
|
11 |
# 5.1 Use GPT 3.5 for abstract, conclusion, ... (or may not)
|
12 |
# 5.2 Use local LLM to generate keywords, figures, ...
|
13 |
# 5.3 Use embedding to find most related papers (find a paper dataset)
|
14 |
# 6. get logs when the procedure is not completed.
|
15 |
# 7. 自己的文件库; 更多的prompts
|
|
|
|
|
|
|
16 |
# 11. distinguish citep and citet
|
17 |
+
# future:
|
18 |
+
# 8. Change prompts to langchain
|
19 |
+
# 4. add auto_polishing function
|
20 |
+
# 12. Change link to more appealing color # after the website is built;
|
21 |
|
22 |
openai_key = os.getenv("OPENAI_API_KEY")
|
23 |
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
|
|
40 |
IS_OPENAI_API_KEY_AVAILABLE = False
|
41 |
|
42 |
|
|
|
43 |
def clear_inputs(text1, text2):
|
44 |
return "", ""
|
45 |
|
46 |
|
47 |
+
def wrapped_generator(paper_title, paper_description, openai_api_key=None,
|
48 |
+
template="ICLR2022",
|
49 |
+
cache_mode=IS_CACHE_AVAILABLE, generator=None):
|
50 |
# if `cache_mode` is True, then follow the following steps:
|
51 |
# check if "title"+"description" have been generated before
|
52 |
# if so, download from the cloud storage, return it
|
|
|
56 |
# generator = generate_backgrounds
|
57 |
generator = generate_draft
|
58 |
# generator = fake_generator
|
59 |
+
if openai_api_key is not None:
|
60 |
+
openai.api_key = openai_api_key
|
61 |
openai.Model.list()
|
62 |
|
63 |
if cache_mode:
|
64 |
from utils.storage import list_all_files, download_file, upload_file
|
65 |
# check if "title"+"description" have been generated before
|
66 |
|
67 |
+
input_dict = {"title": paper_title, "description": paper_description,
|
68 |
+
"generator": "generate_draft"} # todo: modify here also
|
69 |
file_name = hash_name(input_dict) + ".zip"
|
70 |
file_list = list_all_files()
|
71 |
# print(f"{file_name} will be generated. Check the file list {file_list}")
|
|
|
75 |
return file_name
|
76 |
else:
|
77 |
# generate the result.
|
78 |
+
# output = fake_generate_backgrounds(title, description, openai_key)
|
79 |
+
# todo: use `generator` to control which function to use.
|
80 |
+
output = generator(paper_title, paper_description, template, "gpt-4")
|
81 |
upload_file(output)
|
82 |
return output
|
83 |
else:
|
84 |
# output = fake_generate_backgrounds(title, description, openai_key)
|
85 |
+
output = generator(paper_title, paper_description, template, "gpt-4")
|
86 |
return output
|
87 |
|
88 |
|
89 |
+
theme = gr.themes.Default(font=gr.themes.GoogleFont("Questrial"))
|
90 |
+
# .set(
|
91 |
+
# background_fill_primary='#E5E4E2',
|
92 |
+
# background_fill_secondary = '#F6F6F6',
|
93 |
+
# button_primary_background_fill="#281A39"
|
94 |
+
# )
|
95 |
|
96 |
with gr.Blocks(theme=theme) as demo:
|
97 |
gr.Markdown('''
|
|
|
109 |
''')
|
110 |
with gr.Row():
|
111 |
with gr.Column(scale=2):
|
112 |
+
key = gr.Textbox(value=openai_key, lines=1, max_lines=1, label="OpenAI Key",
|
113 |
+
visible=not IS_OPENAI_API_KEY_AVAILABLE)
|
114 |
+
# generator = gr.Dropdown(choices=["学术论文", "文献总结"], value="文献总结",
|
115 |
+
# label="Selection", info="目前支持生成'学术论文'和'文献总结'.", interactive=True)
|
116 |
+
title = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
|
117 |
+
label="Title", info="论文标题")
|
118 |
description = gr.Textbox(lines=5, label="Description (Optional)", visible=False)
|
119 |
|
120 |
with gr.Row():
|
121 |
clear_button = gr.Button("Clear")
|
122 |
+
submit_button = gr.Button("Submit", variant="primary")
|
123 |
with gr.Column(scale=1):
|
124 |
+
style_mapping = {True: "color:white;background-color:green",
|
125 |
+
False: "color:white;background-color:red"} # todo: to match website's style
|
126 |
availability_mapping = {True: "AVAILABLE", False: "NOT AVAILABLE"}
|
127 |
gr.Markdown(f'''## Huggingface Space Status
|
128 |
当`OpenAI API`显示AVAILABLE的时候这个Space可以直接使用.
|
auto_backgrounds.py
CHANGED
@@ -91,7 +91,7 @@ def fake_generator(title, description="", template="ICLR2022", model="gpt-4"):
|
|
91 |
return make_archive("sample-output.pdf", filename)
|
92 |
|
93 |
|
94 |
-
def generate_draft(title, description="", template="ICLR2022", model="gpt-4", search_engine="ss", tldr=True, max_kw_refs=
|
95 |
paper, destination_folder, _ = _generation_setup(title, description, template, model, search_engine, tldr, max_kw_refs)
|
96 |
|
97 |
# todo: `list_of_methods` failed to be generated; find a solution ...
|
|
|
91 |
return make_archive("sample-output.pdf", filename)
|
92 |
|
93 |
|
94 |
+
def generate_draft(title, description="", template="ICLR2022", model="gpt-4", search_engine="ss", tldr=True, max_kw_refs=14):
|
95 |
paper, destination_folder, _ = _generation_setup(title, description, template, model, search_engine, tldr, max_kw_refs)
|
96 |
|
97 |
# todo: `list_of_methods` failed to be generated; find a solution ...
|
utils/references.py
CHANGED
@@ -8,6 +8,7 @@
|
|
8 |
import requests
|
9 |
import re
|
10 |
|
|
|
11 |
#########################################################
|
12 |
# Some basic tools
|
13 |
#########################################################
|
@@ -18,6 +19,7 @@ def remove_newlines(serie):
|
|
18 |
serie = serie.replace(' ', ' ')
|
19 |
return serie
|
20 |
|
|
|
21 |
#########################################################
|
22 |
# Semantic Scholar (SS) API
|
23 |
#########################################################
|
@@ -35,10 +37,10 @@ def ss_search(keywords, limit=20, fields=None):
|
|
35 |
return response.json()
|
36 |
|
37 |
|
38 |
-
|
39 |
def _collect_papers_ss(keyword, counts=3, tldr=False):
|
40 |
def externalIds2link(externalIds):
|
41 |
-
# externalIds
|
|
|
42 |
if externalIds:
|
43 |
# Supports ArXiv, MAG, ACL, PubMed, Medline, PubMedCentral, DBLP, DOI
|
44 |
# priority: DBLP > arXiv > (todo: MAG > CorpusId > DOI > ACL > PubMed > Mdeline > PubMedCentral)
|
@@ -58,7 +60,10 @@ def _collect_papers_ss(keyword, counts=3, tldr=False):
|
|
58 |
return ""
|
59 |
|
60 |
def extract_paper_id(last_name, year_str, title):
|
61 |
-
|
|
|
|
|
|
|
62 |
|
63 |
def extract_author_info(raw_authors):
|
64 |
authors = [author['name'] for author in raw_authors]
|
@@ -67,17 +72,18 @@ def _collect_papers_ss(keyword, counts=3, tldr=False):
|
|
67 |
last_name = authors[0].split()[-1]
|
68 |
return authors_str, last_name
|
69 |
|
70 |
-
def parse_search_results(
|
71 |
# turn the search result to a list of paper dictionary.
|
72 |
papers = []
|
73 |
-
for raw_paper in
|
74 |
if raw_paper["abstract"] is None:
|
75 |
continue
|
76 |
|
77 |
authors_str, last_name = extract_author_info(raw_paper['authors'])
|
78 |
year_str = str(raw_paper['year'])
|
79 |
title = raw_paper['title']
|
80 |
-
journal =
|
|
|
81 |
if not journal:
|
82 |
journal = "arXiv preprint"
|
83 |
paper_id = extract_paper_id(last_name, year_str, title).lower()
|
@@ -97,6 +103,7 @@ def _collect_papers_ss(keyword, counts=3, tldr=False):
|
|
97 |
}
|
98 |
papers.append(result)
|
99 |
return papers
|
|
|
100 |
raw_results = ss_search(keyword, limit=counts)
|
101 |
if raw_results is not None:
|
102 |
search_results = raw_results['data']
|
@@ -105,6 +112,7 @@ def _collect_papers_ss(keyword, counts=3, tldr=False):
|
|
105 |
results = parse_search_results(search_results)
|
106 |
return results
|
107 |
|
|
|
108 |
#########################################################
|
109 |
# ArXiv API
|
110 |
#########################################################
|
@@ -174,9 +182,14 @@ def _collect_papers_arxiv(keyword, counts=3, tldr=False):
|
|
174 |
results = parse_results(content)
|
175 |
return results
|
176 |
|
|
|
|
|
|
|
|
|
|
|
177 |
# Each `paper` is a dictionary containing (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal
|
178 |
class References:
|
179 |
-
def __init__(self, load_papers
|
180 |
if load_papers:
|
181 |
# todo: read a json file from the given path
|
182 |
# this could be used to support pre-defined references
|
@@ -192,7 +205,7 @@ class References:
|
|
192 |
"""
|
193 |
match method:
|
194 |
case "arxiv":
|
195 |
-
process =_collect_papers_arxiv
|
196 |
case "ss":
|
197 |
process = _collect_papers_ss
|
198 |
case _:
|
@@ -246,16 +259,17 @@ class References:
|
|
246 |
prompts[paper["paper_id"]] = paper["abstract"]
|
247 |
return prompts
|
248 |
|
|
|
249 |
if __name__ == "__main__":
|
250 |
refs = References()
|
251 |
keywords_dict = {
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
}
|
258 |
refs.collect_papers(keywords_dict, method="ss", tldr=True)
|
259 |
for p in refs.papers:
|
260 |
print(p["paper_id"])
|
261 |
-
print(len(refs.papers))
|
|
|
8 |
import requests
|
9 |
import re
|
10 |
|
11 |
+
|
12 |
#########################################################
|
13 |
# Some basic tools
|
14 |
#########################################################
|
|
|
19 |
serie = serie.replace(' ', ' ')
|
20 |
return serie
|
21 |
|
22 |
+
|
23 |
#########################################################
|
24 |
# Semantic Scholar (SS) API
|
25 |
#########################################################
|
|
|
37 |
return response.json()
|
38 |
|
39 |
|
|
|
40 |
def _collect_papers_ss(keyword, counts=3, tldr=False):
|
41 |
def externalIds2link(externalIds):
|
42 |
+
# Sample externalIds:
|
43 |
+
# "{'MAG': '2932819148', 'DBLP': 'conf/icml/HaarnojaZAL18', 'ArXiv': '1801.01290', 'CorpusId': 28202810}"
|
44 |
if externalIds:
|
45 |
# Supports ArXiv, MAG, ACL, PubMed, Medline, PubMedCentral, DBLP, DOI
|
46 |
# priority: DBLP > arXiv > (todo: MAG > CorpusId > DOI > ACL > PubMed > Mdeline > PubMedCentral)
|
|
|
60 |
return ""
|
61 |
|
62 |
def extract_paper_id(last_name, year_str, title):
|
63 |
+
pattern = r'^\w+'
|
64 |
+
words = re.findall(pattern, title)
|
65 |
+
# return last_name + year_str + title.split(' ', 1)[0]
|
66 |
+
return last_name + year_str + words[0]
|
67 |
|
68 |
def extract_author_info(raw_authors):
|
69 |
authors = [author['name'] for author in raw_authors]
|
|
|
72 |
last_name = authors[0].split()[-1]
|
73 |
return authors_str, last_name
|
74 |
|
75 |
+
def parse_search_results(search_results_ss):
|
76 |
# turn the search result to a list of paper dictionary.
|
77 |
papers = []
|
78 |
+
for raw_paper in search_results_ss:
|
79 |
if raw_paper["abstract"] is None:
|
80 |
continue
|
81 |
|
82 |
authors_str, last_name = extract_author_info(raw_paper['authors'])
|
83 |
year_str = str(raw_paper['year'])
|
84 |
title = raw_paper['title']
|
85 |
+
# some journal may contain &; replace it. e.g. journal={IEEE Power & Energy Society General Meeting}
|
86 |
+
journal = raw_paper['venue'].replace("&", "\\&")
|
87 |
if not journal:
|
88 |
journal = "arXiv preprint"
|
89 |
paper_id = extract_paper_id(last_name, year_str, title).lower()
|
|
|
103 |
}
|
104 |
papers.append(result)
|
105 |
return papers
|
106 |
+
|
107 |
raw_results = ss_search(keyword, limit=counts)
|
108 |
if raw_results is not None:
|
109 |
search_results = raw_results['data']
|
|
|
112 |
results = parse_search_results(search_results)
|
113 |
return results
|
114 |
|
115 |
+
|
116 |
#########################################################
|
117 |
# ArXiv API
|
118 |
#########################################################
|
|
|
182 |
results = parse_results(content)
|
183 |
return results
|
184 |
|
185 |
+
|
186 |
+
#########################################################
|
187 |
+
# References Class
|
188 |
+
#########################################################
|
189 |
+
|
190 |
# Each `paper` is a dictionary containing (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal
|
191 |
class References:
|
192 |
+
def __init__(self, load_papers=""):
|
193 |
if load_papers:
|
194 |
# todo: read a json file from the given path
|
195 |
# this could be used to support pre-defined references
|
|
|
205 |
"""
|
206 |
match method:
|
207 |
case "arxiv":
|
208 |
+
process = _collect_papers_arxiv
|
209 |
case "ss":
|
210 |
process = _collect_papers_ss
|
211 |
case _:
|
|
|
259 |
prompts[paper["paper_id"]] = paper["abstract"]
|
260 |
return prompts
|
261 |
|
262 |
+
|
263 |
if __name__ == "__main__":
|
264 |
refs = References()
|
265 |
keywords_dict = {
|
266 |
+
"Deep Q-Networks": 15,
|
267 |
+
"Policy Gradient Methods": 24,
|
268 |
+
"Actor-Critic Algorithms": 4,
|
269 |
+
"Model-Based Reinforcement Learning": 13,
|
270 |
+
"Exploration-Exploitation Trade-off": 7
|
271 |
+
}
|
272 |
refs.collect_papers(keywords_dict, method="ss", tldr=True)
|
273 |
for p in refs.papers:
|
274 |
print(p["paper_id"])
|
275 |
+
print(len(refs.papers))
|