File size: 10,676 Bytes
8aec19e
1b82d4c
a0d1776
ae495a3
 
1b82d4c
3a7ead9
6fe5041
8e698eb
3a7ead9
8e698eb
 
 
 
295e94f
 
 
 
8ef9348
 
 
b4c6c2b
 
6fe5041
1b82d4c
 
 
 
09305ff
1b82d4c
 
 
 
 
09305ff
1b82d4c
 
a0d1776
 
 
 
 
 
1b82d4c
8aec19e
 
1b82d4c
8aec19e
1b82d4c
8ef9348
 
 
09305ff
1b82d4c
 
 
a0d1776
ae495a3
 
d6186c5
 
8ef9348
 
a0d1776
 
1b82d4c
ae495a3
1b82d4c
ae495a3
8ef9348
 
ae495a3
1b82d4c
ae495a3
1b82d4c
 
 
 
 
 
8ef9348
 
 
ae495a3
1b82d4c
ab295c7
1b82d4c
8ef9348
1b82d4c
 
ab295c7
8ef9348
 
 
 
 
 
ab295c7
a0d1776
8aec19e
6fe5041
8aec19e
ae495a3
b4720c2
ae495a3
a7f1695
f9b322e
a7f1695
6fe5041
1bf5677
b4720c2
 
ae495a3
8aec19e
8e698eb
8aec19e
a0d1776
8ef9348
 
8e698eb
8ef9348
 
8e698eb
 
 
 
 
 
 
 
 
 
 
677c576
 
 
8e698eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677c576
 
8e698eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0d1776
8ef9348
 
a0d1776
1b82d4c
 
ae495a3
f9b322e
a0d1776
1b82d4c
 
8e698eb
 
8aec19e
 
1b82d4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gradio as gr
import os
import openai
from auto_backgrounds import generate_backgrounds, fake_generator, generate_draft
from utils.file_operations import hash_name

# note: App白屏bug:允许第三方cookie
# todo:
#   6. get logs when the procedure is not completed. *
#   7. 自己的文件库; 更多的prompts
#   8. Decide on how to generate the main part of a paper * (Langchain/AutoGPT
#   9. Load .bibtex file to generate a pre-defined references list. *
#   1. 把paper改成纯JSON?
#   2. 实现别的功能
#   3. Check API Key GPT-4 Support.
#   8. Re-build some components using `langchain`
#           - in `references.py`, use PromptTemplates.format -> str
#           - in `gpt_interation`, use LLM
# future:
#   4. add auto_polishing function
#   12. Change link to more appealing color # after the website is built;
#   1. Check if there are any duplicated citations
#   2. Remove potential thebibliography and bibitem in .tex file

openai_key = os.getenv("OPENAI_API_KEY")
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
if access_key_id is None or secret_access_key is None:
    print("Access keys are not provided. Outputs cannot be saved to AWS Cloud Storage.\n")
    IS_CACHE_AVAILABLE = False
else:
    IS_CACHE_AVAILABLE = True

if openai_key is None:
    print("OPENAI_API_KEY is not found in environment variables. The output may not be generated.\n")
    IS_OPENAI_API_KEY_AVAILABLE = False
else:
    openai.api_key = openai_key
    try:
        openai.Model.list()
        IS_OPENAI_API_KEY_AVAILABLE = True
    except Exception as e:
        IS_OPENAI_API_KEY_AVAILABLE = False


def clear_inputs(text1, text2):
    return "", ""


def wrapped_generator(paper_title, paper_description, openai_api_key=None,
                      template="ICLR2022",
                      cache_mode=IS_CACHE_AVAILABLE, generator=None):
    # if `cache_mode` is True, then follow the following steps:
    #        check if "title"+"description" have been generated before
    #        if so, download from the cloud storage, return it
    #        if not, generate the result.
    if generator is None:
        # todo: add a Dropdown to select which generator to use.
        # generator = generate_backgrounds
        generator = generate_draft
        # generator = fake_generator
    if openai_api_key is not None:
        openai.api_key = openai_api_key
        openai.Model.list()

    if cache_mode:
        from utils.storage import list_all_files, download_file, upload_file
        # check if "title"+"description" have been generated before

        input_dict = {"title": paper_title, "description": paper_description,
                      "generator": "generate_draft"}  # todo: modify here also
        file_name = hash_name(input_dict) + ".zip"
        file_list = list_all_files()
        # print(f"{file_name} will be generated. Check the file list {file_list}")
        if file_name in file_list:
            # download from the cloud storage, return it
            download_file(file_name)
            return file_name
        else:
            # generate the result.
            # output = fake_generate_backgrounds(title, description, openai_key)
            # todo: use `generator` to control which function to use.
            output = generator(paper_title, paper_description, template, "gpt-4")
            upload_file(output)
            return output
    else:
        # output = fake_generate_backgrounds(title, description, openai_key)
        output = generator(paper_title, paper_description, template, "gpt-4")
        return output


theme = gr.themes.Default(font=gr.themes.GoogleFont("Questrial"))
# .set(
#     background_fill_primary='#E5E4E2',
#     background_fill_secondary = '#F6F6F6',
#     button_primary_background_fill="#281A39"
# )

with gr.Blocks(theme=theme) as demo:
    gr.Markdown('''
    # Auto-Draft: 文献整理辅助工具
    
    本Demo提供对[Auto-Draft](https://github.com/CCCBora/auto-draft)的auto_draft功能的测试。通过输入想要生成的论文名称(比如Playing atari with deep reinforcement learning),即可由AI辅助生成论文模板.    
    
    ***2023-05-03 Update***: 在公开版本中为大家提供了输入OpenAI API Key的地址, 如果有GPT-4的API KEY的话可以在这里体验! 
    
    在这个Huggingface Organization里也提供一定额度的免费体验: [AUTO-ACADEMIC](https://huggingface.co/organizations/auto-academic/share/HPjgazDSlkwLNCWKiAiZoYtXaJIatkWDYM).
    
    如果有更多想法和建议欢迎加入QQ群里交流, 如果我在Space里更新了Key我会第一时间通知大家. 群号: ***249738228***.  
    
    ## 用法
    
    输入想要生成的论文名称(比如Playing Atari with Deep Reinforcement Learning), 点击Submit, 等待大概十分钟, 下载.zip格式的输出,在Overleaf上编译浏览.  
    ''')

    with gr.Row():
        with gr.Column(scale=2):
            key = gr.Textbox(value=openai_key, lines=1, max_lines=1, label="OpenAI Key",
                             visible=not IS_OPENAI_API_KEY_AVAILABLE)

            # generator = gr.Dropdown(choices=["学术论文", "文献总结"], value="文献总结",
            # label="Selection", info="目前支持生成'学术论文'和'文献总结'.", interactive=True)

            # 每个功能做一个tab
            with gr.Tab("学术论文"):
                title = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
                                   label="Title", info="论文标题")

                with gr.Accordion("高级设置", open=False):
                    description_pp = gr.Textbox(lines=5, label="Description (Optional)", visible=True,
                                                info="对希望生成的论文的一些描述. 包括这篇论文的创新点, 主要贡献, 等.")

                    interactive = False
                    gr.Markdown('''
                    ## 下面的功能我只做了UI, 还没来得及实现功能. 
                    ''')
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown('''
                            Upload .bib file (Optional)
                            
                            通过上传.bib文件来控制GPT-4模型必须参考哪些文献. 
                            ''')
                            bibtex_file = gr.File(label="Upload .bib file", file_types=["text"],
                                                  interactive=interactive)
                        with gr.Column():
                            search_engine = gr.Dropdown(label="Search Engine",
                                                        choices=["ArXiv", "Semantic Scholar", "Google Scholar", "None"],
                                                        value= "Semantic Scholar",
                                                        interactive=interactive,
                                                        info="用于决定GPT-4用什么搜索引擎来搜索文献. 选择None的时候仅参考给定文献.")
                            tldr = gr.Checkbox(value=True, label="TLDR;",
                                               info="选择此筐表示将使用Semantic Scholar的TLDR作为文献的总结.",
                                               interactive = interactive),
                            use_cache = gr.Checkbox(label="总是重新生成",
                                                    info="选择此筐表示将不会读取已经生成好的文章.",
                                               interactive = interactive)
                            slider = gr.Slider(minimum=1, maximum=30, value=20, label="最大参考文献数目",
                                               info="过多参考文献会超出Token数限制导致报错,这里限制最大参考文献数目.")

                with gr.Row():
                    clear_button_pp = gr.Button("Clear")
                    submit_button_pp = gr.Button("Submit", variant="primary")

            with gr.Tab("文献综述"):
                gr.Markdown('''
                <h1  style="text-align: center;">Coming soon!</h1>
                ''')
                # topic = gr.Textbox(value="Deep Reinforcement Learning", lines=1, max_lines=1,
                #                    label="Topic", info="文献主题")
                # with gr.Accordion("Advanced Setting"):
                #     description_lr = gr.Textbox(lines=5, label="Description (Optional)", visible=True,
                #                              info="对希望生成的综述的一些描述. 包括这篇论文的创新点, 主要贡献, 等.")
                # with gr.Row():
                #     clear_button_lr = gr.Button("Clear")
                #     submit_button_lr = gr.Button("Submit", variant="primary")
            with gr.Tab("论文润色"):
                gr.Markdown('''
                <h1  style="text-align: center;">Coming soon!</h1>
                ''')
            with gr.Tab("帮我想想该写什么论文!"):
                gr.Markdown('''
                <h1  style="text-align: center;">Coming soon!</h1>
                ''')

        with gr.Column(scale=1):
            style_mapping = {True: "color:white;background-color:green",
                             False: "color:white;background-color:red"}  # todo: to match website's style
            availability_mapping = {True: "AVAILABLE", False: "NOT AVAILABLE"}
            gr.Markdown(f'''## Huggingface Space Status  
             当`OpenAI API`显示AVAILABLE的时候这个Space可以直接使用.    
             当`OpenAI API`显示NOT AVAILABLE的时候这个Space可以通过在左侧输入OPENAI KEY来使用. 需要有GPT-4的API权限. 
             当`Cache`显示AVAILABLE的时候, 所有的输入和输出会被备份到我的云储存中. 显示NOT AVAILABLE的时候不影响实际使用. 
            `OpenAI API`: <span style="{style_mapping[IS_OPENAI_API_KEY_AVAILABLE]}">{availability_mapping[IS_OPENAI_API_KEY_AVAILABLE]}</span>.  `Cache`: <span style="{style_mapping[IS_CACHE_AVAILABLE]}">{availability_mapping[IS_CACHE_AVAILABLE]}</span>.''')
            file_output = gr.File(label="Output")

    clear_button_pp.click(fn=clear_inputs, inputs=[title, description_pp], outputs=[title, description_pp])
    submit_button_pp.click(fn=wrapped_generator, inputs=[title, description_pp, key], outputs=file_output)

demo.queue(concurrency_count=1, max_size=5, api_open=False)
demo.launch()