Spaces:
Running
Running
File size: 6,592 Bytes
9ceb843 0b8c16d 9ceb843 91c5b22 92f1f93 91c5b22 2bf0b31 ec86cda 2bf0b31 3df678e b64c62d d027111 b64c62d 4752cc3 6e6b9bb 91c5b22 9ceb843 5e9e451 90eea3b 91c5b22 1d33a30 91c5b22 1d33a30 91c5b22 1d33a30 91c5b22 b146dec 91c5b22 5e9e451 91c5b22 b64c62d 9ceb843 0b8c16d 9ceb843 ab74236 9ceb843 ab74236 9ceb843 ab74236 9ceb843 35e2ca1 9ceb843 b7aaef4 faa2dab 8799e00 06fd8bd 7e0e569 06fd8bd 7eaa6d2 9ceb843 56fcfaf b7aaef4 9f4ce43 9ceb843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import pandas as pd
from pathlib import Path
from datasets import load_dataset
import numpy as np
import os
import re
UNVERIFIED_MODELS = [
"nvidia/Nemotron-4-340B-Reward",
"nvidia/Llama3-70B-SteerLM-RM",
"Cohere May 2024",
"google/gemini-1.5-pro-0514",
"google/flame-24b-july-2024",
"Cohere March 2024",
"facebook/Self-taught-Llama-3-70B",
"facebook/Self-taught-evaluator-llama3.1-70B",
"google/flame-1.0-24B-july-2024",
"Salesforce/SFR-LLaMa-3.1-70B-Judge-r",
"Salesforce/SFR-nemo-12B-Judge-r",
"Salesforce/SFR-LLaMa-3.1-8B-Judge-r",
"SF-Foundation/TextEval-OffsetBias-12B",
"SF-Foundation/TextEval-Llama3.1-70B",
"nvidia/Llama-3.1-Nemotron-70B-Reward",
]
CONTAMINATED_MODELS = [
"Skywork/Skywork-Reward-Gemma-2-27B",
"Skywork/Skywork-Critic-Llama-3.1-70B",
"LxzGordon/URM-LLaMa-3.1-8B",
"Skywork/Skywork-Reward-Llama-3.1-8B",
"Ray2333/GRM-Llama3-8B-rewardmodel-ft",
"nicolinho/QRM-Llama3.1-8B",
"nicolinho/QRM-Llama3-8B",
"general-preference/GPM-Llama-3.1-8B",
"general-preference/GPM-Gemma-2B",
"ZiyiYe/Con-J-Qwen2-7B",
"Ray2333/Gemma-2B-rewardmodel-ft",
"Ray2333/GRM-Gemma-2B-rewardmodel-ft"
]
# From Open LLM Leaderboard
def model_hyperlink(link, model_name):
# if model_name is above 50 characters, return first 47 characters and "..."
if len(model_name) > 50:
model_name = model_name[:47] + "..."
if model_name == "random":
output = "random"
elif model_name == "Cohere March 2024":
output = f'<a target="_blank" href="https://huggingface.co/Cohere" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
elif "openai" == model_name.split("/")[0]:
output = f'<a target="_blank" href="https://huggingface.co/openai" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
elif "Anthropic" == model_name.split("/")[0]:
output = f'<a target="_blank" href="https://huggingface.co/Anthropic" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
elif "google" == model_name.split("/")[0]:
output = f'<a target="_blank" href="https://huggingface.co/google" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
elif "PoLL" == model_name.split("/")[0]:
output = model_name
output = f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
if model_name in UNVERIFIED_MODELS:
output += " *"
if model_name in CONTAMINATED_MODELS:
output += " ⚠️"
return output
def undo_hyperlink(html_string):
# Regex pattern to match content inside > and <
pattern = r'>[^<]+<'
match = re.search(pattern, html_string)
if match:
# Extract the matched text and remove leading '>' and trailing '<'
return match.group(0)[1:-1]
else:
return "No text found"
# Define a function to fetch and process data
def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to pull the git repo
dir = Path(data_repo)
data_dir = dir / subdir
orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
# get all files within the sub folders orgs
models_results = []
for org in orgs:
org_dir = data_dir / org
files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))]
for file in files:
if file.endswith(".json"):
models_results.append(org + "/" + file)
# create empty dataframe to add all data to
df = pd.DataFrame()
# load all json data in the list models_results one by one to avoid not having the same entries
for model in models_results:
model_data = load_dataset("json", data_files=data_repo + subdir+ "/" + model, split="train")
df2 = pd.DataFrame(model_data)
# add to df
df = pd.concat([df2, df])
# remove chat_template comlumn
df = df.drop(columns=["chat_template"])
# sort columns alphabetically
df = df.reindex(sorted(df.columns), axis=1)
# move column "model" to the front
cols = list(df.columns)
cols.insert(0, cols.pop(cols.index('model')))
df = df.loc[:, cols]
# select all columns except "model"
cols = df.columns.tolist()
cols.remove("model")
# if model_type is a column (pref tests may not have it)
if "model_type" in cols:
cols.remove("model_type")
# remove ref_model if in columns
if "ref_model" in cols:
cols.remove("ref_model")
# remove model_beaker from dataframe
if "model_beaker" in cols:
cols.remove("model_beaker")
df = df.drop(columns=["model_beaker"])
# remove column xstest (outdated data)
# if xstest is a column
if "xstest" in cols:
df = df.drop(columns=["xstest"])
cols.remove("xstest")
if "ref_model" in df.columns:
df = df.drop(columns=["ref_model"])
# remove column anthropic and summarize_prompted (outdated data)
if "anthropic" in cols:
df = df.drop(columns=["anthropic"])
cols.remove("anthropic")
if "summarize_prompted" in cols:
df = df.drop(columns=["summarize_prompted"])
cols.remove("summarize_prompted")
# remove pku_better and pku_safer (removed from the leaderboard)
if "pku_better" in cols:
df = df.drop(columns=["pku_better"])
cols.remove("pku_better")
if "pku_safer" in cols:
df = df.drop(columns=["pku_safer"])
cols.remove("pku_safer")
# convert to score
df[cols] = (df[cols]*100)
avg = np.nanmean(df[cols].values,axis=1)
# add average column
df["average"] = avg
# apply model_hyperlink function to column "model"
df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x))
# move average column to the second
cols = list(df.columns)
cols.insert(1, cols.pop(cols.index('average')))
df = df.loc[:, cols]
# move model_type column to first
if "model_type" in cols:
cols = list(df.columns)
cols.insert(1, cols.pop(cols.index('model_type')))
df = df.loc[:, cols]
# remove models with DPO Ref. Free as type (future work)
df = df[~df["model_type"].str.contains("DPO Ref. Free", na=False)]
return df
|