Spaces:
Running
Running
natolambert
commited on
Commit
·
b7aaef4
1
Parent(s):
8799e00
add model type
Browse files- app.py +4 -4
- src/utils.py +9 -0
app.py
CHANGED
@@ -52,7 +52,7 @@ def avg_over_herm(dataframe):
|
|
52 |
new_df[subset] = np.round(np.average(sub_data, axis=1, weights=sub_counts), 2) # take the weighted average
|
53 |
# new_df[subset] = np.round(np.nanmean(new_df[subset_cols].values, axis=1), 2)
|
54 |
|
55 |
-
keep_columns = ["model",] + list(subset_mapping.keys())
|
56 |
# keep_columns = ["model", "average"] + subsets
|
57 |
new_df = new_df[keep_columns]
|
58 |
|
@@ -69,7 +69,7 @@ def length_bias_check(dataframe):
|
|
69 |
Then, take the average of the three buckets as "average"
|
70 |
"""
|
71 |
new_df = dataframe.copy()
|
72 |
-
existing_subsets = new_df.columns[
|
73 |
final_subsets = ["Length Bias", "Neutral", "Terse Bias"]
|
74 |
# new data is empty list dict for each final subset
|
75 |
new_data = {s: [] for s in final_subsets}
|
@@ -105,8 +105,8 @@ herm_data_length = length_bias_check(herm_data).sort_values(by='Terse Bias', asc
|
|
105 |
prefs_data = load_all_data(repo_dir_herm, subdir="pref-sets").sort_values(by='average', ascending=False)
|
106 |
# prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
|
107 |
|
108 |
-
col_types_herm = ["markdown"] + ["number"] * (len(herm_data.columns) - 1)
|
109 |
-
col_types_herm_avg = ["markdown"] + ["number"] * (len(herm_data_avg.columns) - 1)
|
110 |
cols_herm_data_length = ["markdown"] + ["number"] * (len(herm_data_length.columns) - 1)
|
111 |
col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
|
112 |
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
|
|
|
52 |
new_df[subset] = np.round(np.average(sub_data, axis=1, weights=sub_counts), 2) # take the weighted average
|
53 |
# new_df[subset] = np.round(np.nanmean(new_df[subset_cols].values, axis=1), 2)
|
54 |
|
55 |
+
keep_columns = ["model",] + ["model_type"] + list(subset_mapping.keys())
|
56 |
# keep_columns = ["model", "average"] + subsets
|
57 |
new_df = new_df[keep_columns]
|
58 |
|
|
|
69 |
Then, take the average of the three buckets as "average"
|
70 |
"""
|
71 |
new_df = dataframe.copy()
|
72 |
+
existing_subsets = new_df.columns[3:] # model, model_type, average
|
73 |
final_subsets = ["Length Bias", "Neutral", "Terse Bias"]
|
74 |
# new data is empty list dict for each final subset
|
75 |
new_data = {s: [] for s in final_subsets}
|
|
|
105 |
prefs_data = load_all_data(repo_dir_herm, subdir="pref-sets").sort_values(by='average', ascending=False)
|
106 |
# prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
|
107 |
|
108 |
+
col_types_herm = ["markdown"] + ["str"] + ["number"] * (len(herm_data.columns) - 1)
|
109 |
+
col_types_herm_avg = ["markdown"]+ ["str"] + ["number"] * (len(herm_data_avg.columns) - 1)
|
110 |
cols_herm_data_length = ["markdown"] + ["number"] * (len(herm_data_length.columns) - 1)
|
111 |
col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
|
112 |
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
|
src/utils.py
CHANGED
@@ -61,6 +61,9 @@ def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to p
|
|
61 |
# select all columns except "model"
|
62 |
cols = df.columns.tolist()
|
63 |
cols.remove("model")
|
|
|
|
|
|
|
64 |
# remove model_beaker from dataframe
|
65 |
if "model_beaker" in cols:
|
66 |
cols.remove("model_beaker")
|
@@ -80,6 +83,12 @@ def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to p
|
|
80 |
cols.insert(1, cols.pop(cols.index('average')))
|
81 |
df = df.loc[:, cols]
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
# remove column xstest (outdated data)
|
84 |
# if xstest is a column
|
85 |
if "xstest" in df.columns:
|
|
|
61 |
# select all columns except "model"
|
62 |
cols = df.columns.tolist()
|
63 |
cols.remove("model")
|
64 |
+
# if model_type is a column (pref tests may not have it)
|
65 |
+
if "model_type" in cols:
|
66 |
+
cols.remove("model_type")
|
67 |
# remove model_beaker from dataframe
|
68 |
if "model_beaker" in cols:
|
69 |
cols.remove("model_beaker")
|
|
|
83 |
cols.insert(1, cols.pop(cols.index('average')))
|
84 |
df = df.loc[:, cols]
|
85 |
|
86 |
+
# move model_type column to first
|
87 |
+
if "model_type" in cols:
|
88 |
+
cols = list(df.columns)
|
89 |
+
cols.insert(1, cols.pop(cols.index('model_type')))
|
90 |
+
df = df.loc[:, cols]
|
91 |
+
|
92 |
# remove column xstest (outdated data)
|
93 |
# if xstest is a column
|
94 |
if "xstest" in df.columns:
|