Spaces:
Running
Running
natolambert
commited on
Commit
·
7e0e569
1
Parent(s):
62907d5
update to reasoning
Browse files- src/constants.py +2 -1
- src/md.py +2 -1
- src/utils.py +7 -0
src/constants.py
CHANGED
@@ -31,6 +31,7 @@ example_counts = {
|
|
31 |
"mt-bench-easy": 28,
|
32 |
"mt-bench-med": 40,
|
33 |
"mt-bench-hard": 37,
|
|
|
34 |
"refusals-dangerous": 100,
|
35 |
"refusals-offensive": 100,
|
36 |
"llmbar-natural": 100,
|
@@ -53,5 +54,5 @@ subset_mapping = {
|
|
53 |
"Chat": ["alpacaeval-easy", "alpacaeval-length", "alpacaeval-hard", "mt-bench-easy", "mt-bench-med"],
|
54 |
"Chat Hard": ["mt-bench-hard", "llmbar-natural", "llmbar-adver-neighbor", "llmbar-adver-GPTInst", "llmbar-adver-GPTOut", "llmbar-adver-manual"],
|
55 |
"Safety": ["refusals-dangerous", "refusals-offensive", "xstest-should-refuse", "xstest-should-respond", "donotanswer"],
|
56 |
-
"
|
57 |
}
|
|
|
31 |
"mt-bench-easy": 28,
|
32 |
"mt-bench-med": 40,
|
33 |
"mt-bench-hard": 37,
|
34 |
+
"math-prm": 984, # actual length 447, upweighting to be equal to code
|
35 |
"refusals-dangerous": 100,
|
36 |
"refusals-offensive": 100,
|
37 |
"llmbar-natural": 100,
|
|
|
54 |
"Chat": ["alpacaeval-easy", "alpacaeval-length", "alpacaeval-hard", "mt-bench-easy", "mt-bench-med"],
|
55 |
"Chat Hard": ["mt-bench-hard", "llmbar-natural", "llmbar-adver-neighbor", "llmbar-adver-GPTInst", "llmbar-adver-GPTOut", "llmbar-adver-manual"],
|
56 |
"Safety": ["refusals-dangerous", "refusals-offensive", "xstest-should-refuse", "xstest-should-respond", "donotanswer"],
|
57 |
+
"Reasoning": ["math-prm", "hep-cpp", "hep-go", "hep-java", "hep-js", "hep-python", "hep-rust"]
|
58 |
}
|
src/md.py
CHANGED
@@ -8,7 +8,7 @@ We average over 4 core sections (per prompt weighting):
|
|
8 |
1. **Chat**: Includes the easy chat subsets (alpacaeval-easy, alpacaeval-length, alpacaeval-hard, mt-bench-easy, mt-bench-medium)
|
9 |
2. **Chat Hard**: Includes the hard chat subsets (mt-bench-hard, llmbar-natural, llmbar-adver-neighbor, llmbar-adver-GPTInst, llmbar-adver-GPTOut, llmbar-adver-manual)
|
10 |
3. **Safety**: Includes the safety subsets (refusals-dangerous, refusals-offensive, xstest-should-refuse, xstest-should-respond, do not answer)
|
11 |
-
4. **
|
12 |
5. **Classic Sets**: Includes the test sets ([anthropic_helpful](https://huggingface.co/datasets/Anthropic/hh-rlhf), [anthropic_hhh](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment), [mtbench_human](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments), [shp](https://huggingface.co/datasets/stanfordnlp/SHP), [summarize](https://huggingface.co/datasets/openai/summarize_from_feedback))
|
13 |
|
14 |
We include multiple types of reward models in this evaluation:
|
@@ -42,6 +42,7 @@ Total number of the prompts is: 2538, filtered from 4676.
|
|
42 |
| xstest-should-refuse | 450, 250 | False response dataset (see [paper](https://arxiv.org/abs/2308.01263)) |
|
43 |
| xstest-should-respond | 450, 154 | False refusal dataset (see [paper](https://arxiv.org/abs/2308.01263)) |
|
44 |
| do not answer | 939, 136 | [Prompts which responsible LLMs do not answer](https://huggingface.co/datasets/LibrAI/do-not-answer) |
|
|
|
45 |
| hep-cpp | 164 | C++ code revisions (See [dataset](https://huggingface.co/datasets/bigcode/humanevalpack) or [paper](https://arxiv.org/abs/2308.07124)) |
|
46 |
| hep-go | 164 | Go code |
|
47 |
| hep-java | 164 | Java code |
|
|
|
8 |
1. **Chat**: Includes the easy chat subsets (alpacaeval-easy, alpacaeval-length, alpacaeval-hard, mt-bench-easy, mt-bench-medium)
|
9 |
2. **Chat Hard**: Includes the hard chat subsets (mt-bench-hard, llmbar-natural, llmbar-adver-neighbor, llmbar-adver-GPTInst, llmbar-adver-GPTOut, llmbar-adver-manual)
|
10 |
3. **Safety**: Includes the safety subsets (refusals-dangerous, refusals-offensive, xstest-should-refuse, xstest-should-respond, do not answer)
|
11 |
+
4. **Reasoning**: Includes the code and math subsets (math-prm, hep-cpp, hep-go, hep-java, hep-js, hep-python, hep-rust)
|
12 |
5. **Classic Sets**: Includes the test sets ([anthropic_helpful](https://huggingface.co/datasets/Anthropic/hh-rlhf), [anthropic_hhh](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment), [mtbench_human](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments), [shp](https://huggingface.co/datasets/stanfordnlp/SHP), [summarize](https://huggingface.co/datasets/openai/summarize_from_feedback))
|
13 |
|
14 |
We include multiple types of reward models in this evaluation:
|
|
|
42 |
| xstest-should-refuse | 450, 250 | False response dataset (see [paper](https://arxiv.org/abs/2308.01263)) |
|
43 |
| xstest-should-respond | 450, 154 | False refusal dataset (see [paper](https://arxiv.org/abs/2308.01263)) |
|
44 |
| do not answer | 939, 136 | [Prompts which responsible LLMs do not answer](https://huggingface.co/datasets/LibrAI/do-not-answer) |
|
45 |
+
| math-prm | 447 | Human references vs. model error from OpenAI's Let's Verify Step by Step |
|
46 |
| hep-cpp | 164 | C++ code revisions (See [dataset](https://huggingface.co/datasets/bigcode/humanevalpack) or [paper](https://arxiv.org/abs/2308.07124)) |
|
47 |
| hep-go | 164 | Go code |
|
48 |
| hep-java | 164 | Java code |
|
src/utils.py
CHANGED
@@ -88,6 +88,13 @@ def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to p
|
|
88 |
if "summarize_prompted" in cols:
|
89 |
df = df.drop(columns=["summarize_prompted"])
|
90 |
cols.remove("summarize_prompted")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
# round
|
93 |
df[cols] = df[cols].round(2)
|
|
|
88 |
if "summarize_prompted" in cols:
|
89 |
df = df.drop(columns=["summarize_prompted"])
|
90 |
cols.remove("summarize_prompted")
|
91 |
+
# remove pku_better and pku_safer (removed from the leaderboard)
|
92 |
+
if "pku_better" in cols:
|
93 |
+
df = df.drop(columns=["pku_better"])
|
94 |
+
cols.remove("pku_better")
|
95 |
+
if "pku_safer" in cols:
|
96 |
+
df = df.drop(columns=["pku_safer"])
|
97 |
+
cols.remove("pku_safer")
|
98 |
|
99 |
# round
|
100 |
df[cols] = df[cols].round(2)
|