Spaces:
Sleeping
Sleeping
File size: 2,326 Bytes
04f475a 7b63336 04f475a 7b63336 ff3533c f825898 04f475a f825898 800f4d4 04f475a f825898 7b63336 800f4d4 7b63336 800f4d4 f825898 7b63336 f825898 7b63336 ff3533c 94c304e 7b63336 800f4d4 ff3533c 800f4d4 7b63336 94c304e 04f475a 800f4d4 04f475a f825898 800f4d4 f825898 94c304e 800f4d4 f825898 7b63336 f825898 7b63336 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import streamlit as st
from transformers import pipeline
from PIL import Image
from langchain.chat_models import ChatGoogleGenerativeAI
import os
# Set up the Google API Key (add this as a secret in Hugging Face Spaces)
os.environ["GOOGLE_API_KEY"] = st.secrets["GOOGLE_API_KEY"]
# Initialize Google Gemini model
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0
)
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
"""
Load the image classification pipeline using a pretrained model.
"""
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Function to generate ingredients using Google Gemini
def get_ingredients_google(food_name):
"""
Generate a list of ingredients for the given food item using Google Gemini AI.
"""
prompt = f"List the main ingredients typically used to prepare {food_name}:"
response = llm.predict(prompt)
return response.strip()
# Streamlit app setup
st.title("Food Image Recognition with Ingredients")
# Add banner image
st.image("IR_IMAGE.png", caption="Food Recognition Model", use_column_width=True)
# Sidebar for model information
st.sidebar.title("Model Information")
st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification")
st.sidebar.write("**LLM for Ingredients**: Google Gemini 1.5 Pro")
# Upload image
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Classifying...")
# Make predictions
predictions = pipe_classification(image)
# Display only the top prediction
top_food = predictions[0]['label']
st.header(f"Food: {top_food}")
# Generate and display ingredients for the top prediction
st.subheader("Ingredients")
try:
ingredients = get_ingredients_google(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
# Footer
st.sidebar.markdown("Created with ❤️ using Streamlit and Hugging Face.") |