Spaces:
Sleeping
Sleeping
HassanDataSci
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
# Load the model and processor
|
7 |
+
st.title("Food Image Classification with Hugging Face")
|
8 |
+
st.write("Upload an image to classify the type of food!")
|
9 |
+
|
10 |
+
# Load the model
|
11 |
+
@st.cache_resource
|
12 |
+
def load_pipeline():
|
13 |
+
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
|
14 |
+
|
15 |
+
pipe = load_pipeline()
|
16 |
+
|
17 |
+
# Upload image
|
18 |
+
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
|
19 |
+
|
20 |
+
if uploaded_file is not None:
|
21 |
+
# Display the uploaded image
|
22 |
+
image = Image.open(uploaded_file)
|
23 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
24 |
+
st.write("Classifying...")
|
25 |
+
|
26 |
+
# Make predictions
|
27 |
+
predictions = pipe(image)
|
28 |
+
|
29 |
+
# Display top prediction
|
30 |
+
st.subheader("Top Prediction")
|
31 |
+
st.write(f"**{predictions[0]['label']}** with confidence {predictions[0]['score']:.2f}")
|
32 |
+
|
33 |
+
# Display other predictions
|
34 |
+
st.subheader("Other Predictions")
|
35 |
+
for pred in predictions[1:]:
|
36 |
+
st.write(f"{pred['label']}: {pred['score']:.2f}")
|