Spaces:
Sleeping
Sleeping
HassanDataSci
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,71 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
-
import openai
|
5 |
-
|
6 |
-
# Set your OpenAI API key
|
7 |
-
openai.api_key = "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"
|
8 |
-
|
9 |
-
# OpenAI model to use
|
10 |
-
OPENAI_MODEL = "gpt-4o" # Replace with the model you want to display
|
11 |
|
12 |
# Load the image classification pipeline
|
13 |
@st.cache_resource
|
14 |
def load_image_classification_pipeline():
|
|
|
|
|
|
|
15 |
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
|
16 |
|
17 |
pipe_classification = load_image_classification_pipeline()
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
prompt = f"List the main ingredients typically used to prepare {food_name}:"
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
max_tokens=50
|
26 |
-
)
|
27 |
-
return response['choices'][0]['text'].strip()
|
28 |
|
29 |
# Streamlit app
|
30 |
st.title("Food Image Recognition with Ingredients")
|
31 |
|
32 |
-
#
|
|
|
|
|
|
|
33 |
st.sidebar.title("Model Information")
|
34 |
-
st.sidebar.write(
|
|
|
35 |
|
36 |
# Upload image
|
37 |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
|
38 |
|
|
|
|
|
|
|
39 |
if uploaded_file is not None:
|
40 |
# Display the uploaded image
|
41 |
image = Image.open(uploaded_file)
|
42 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
43 |
st.write("Classifying...")
|
44 |
-
|
45 |
# Make predictions
|
46 |
predictions = pipe_classification(image)
|
47 |
-
|
48 |
# Display only the top prediction
|
49 |
top_food = predictions[0]['label']
|
50 |
st.header(f"Food: {top_food}")
|
51 |
-
|
52 |
# Generate and display ingredients for the top prediction
|
53 |
st.subheader("Ingredients")
|
54 |
try:
|
55 |
-
ingredients =
|
56 |
st.write(ingredients)
|
57 |
except Exception as e:
|
58 |
-
st.
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Load the image classification pipeline
|
6 |
@st.cache_resource
|
7 |
def load_image_classification_pipeline():
|
8 |
+
"""
|
9 |
+
Load the image classification pipeline using a pretrained model.
|
10 |
+
"""
|
11 |
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
|
12 |
|
13 |
pipe_classification = load_image_classification_pipeline()
|
14 |
|
15 |
+
# Load Qwen tokenizer and model
|
16 |
+
@st.cache_resource
|
17 |
+
def load_qwen_model():
|
18 |
+
"""
|
19 |
+
Load the Qwen/Qwen2.5-Coder-32B-Instruct model and tokenizer.
|
20 |
+
"""
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct")
|
22 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct", device_map="auto")
|
23 |
+
return tokenizer, model
|
24 |
+
|
25 |
+
# Function to generate ingredients using Qwen
|
26 |
+
def get_ingredients_qwen(food_name, tokenizer, model):
|
27 |
+
"""
|
28 |
+
Generate a list of ingredients for the given food item using the Qwen model.
|
29 |
+
"""
|
30 |
prompt = f"List the main ingredients typically used to prepare {food_name}:"
|
31 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
32 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
33 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
|
|
|
|
|
|
34 |
|
35 |
# Streamlit app
|
36 |
st.title("Food Image Recognition with Ingredients")
|
37 |
|
38 |
+
# Add the provided image as a banner
|
39 |
+
st.image("CTP_Project/IR_IMAGE", caption="Food Recognition Model", use_column_width=True)
|
40 |
+
|
41 |
+
# Sidebar for model information
|
42 |
st.sidebar.title("Model Information")
|
43 |
+
st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification")
|
44 |
+
st.sidebar.write("**LLM for Ingredients**: Qwen2.5-Coder-32B-Instruct")
|
45 |
|
46 |
# Upload image
|
47 |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
|
48 |
|
49 |
+
# Load the Qwen model and tokenizer
|
50 |
+
tokenizer, model = load_qwen_model()
|
51 |
+
|
52 |
if uploaded_file is not None:
|
53 |
# Display the uploaded image
|
54 |
image = Image.open(uploaded_file)
|
55 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
56 |
st.write("Classifying...")
|
57 |
+
|
58 |
# Make predictions
|
59 |
predictions = pipe_classification(image)
|
60 |
+
|
61 |
# Display only the top prediction
|
62 |
top_food = predictions[0]['label']
|
63 |
st.header(f"Food: {top_food}")
|
64 |
+
|
65 |
# Generate and display ingredients for the top prediction
|
66 |
st.subheader("Ingredients")
|
67 |
try:
|
68 |
+
ingredients = get_ingredients_qwen(top_food, tokenizer, model)
|
69 |
st.write(ingredients)
|
70 |
except Exception as e:
|
71 |
+
st.error(f"Error generating ingredients: {e}")
|