File size: 8,305 Bytes
e1bae5b
4c0be85
e368f8b
fb79caf
e368f8b
 
 
 
 
8cc69ea
0427f41
8fce649
8cc69ea
fb79caf
e368f8b
 
 
 
 
 
fb79caf
8fce649
e368f8b
9bc426c
e368f8b
8669b40
e8ce33d
 
 
 
 
 
8669b40
 
 
 
 
 
9bc426c
e8ce33d
 
 
8669b40
e368f8b
e8ce33d
9bc426c
 
e8ce33d
8669b40
 
e368f8b
e8ce33d
9bc426c
e8ce33d
 
 
 
2579950
e8ce33d
 
e368f8b
e8ce33d
e368f8b
 
 
9bc426c
e8ce33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e368f8b
 
 
 
 
 
 
 
 
 
 
 
f427fe9
8cc69ea
a806a3e
e368f8b
 
0427f41
3fc92f2
 
0427f41
 
 
e368f8b
0427f41
 
 
e368f8b
0427f41
 
 
 
e368f8b
0427f41
 
 
 
 
 
 
 
 
 
 
 
2caaec7
 
 
6d2ca12
8cc69ea
50b3f9d
a806a3e
 
 
1a539e2
a806a3e
1a539e2
a806a3e
 
 
 
f890d9b
a806a3e
 
 
 
 
6d2ca12
8cc69ea
a806a3e
e368f8b
 
 
 
 
 
0427f41
 
c1cd1f5
e368f8b
7ec106b
 
27e70be
e368f8b
 
e2dfaeb
1aa0b18
e368f8b
 
 
7f5deab
8cc69ea
e368f8b
 
8cc69ea
e368f8b
 
 
 
 
 
 
 
470c6fe
 
 
e368f8b
 
27e70be
 
 
 
e368f8b
 
 
 
 
 
 
 
 
470c6fe
 
7fc8342
f4644ed
27e70be
 
 
 
 
 
e368f8b
 
 
9eda364
e368f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5deab
e368f8b
375457e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import json
import gradio as gr
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import logging
import traceback
import sys
from audio_processing import AudioProcessor
import spaces 
from chunkedTranscriber import ChunkedTranscriber
from system_message import SYSTEM_MESSAGE


logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)


def load_qa_model():
    """Load question-answering model with long context support."""
    try:
        from transformers import AutoModelForCausalLM, AwqConfig
        
        model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
        
        # Load tokenizer
        tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.getenv("HF_TOKEN"))
        
        quantization_config = AwqConfig(
            bits=4,
            fuse_max_seq_len=8192,   # Configure tokenizer for long inputs
            do_fuse=True,
        )

        # Load the model with simplified rope_scaling configuration
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch.bfloat16,
            low_cpu_mem_usage=True,
            device_map="auto",
            rope_scaling={
                "type": "dynamic",  # Simplified type as expected by the model
                "factor": 8.0       # Scaling factor to support longer contexts
            },
            use_auth_token=os.getenv("HF_TOKEN"),
            quantization_config=quantization_config
        )
        
        # Initialize the pipeline
        qa_pipeline = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            max_new_tokens=1024,  # Limit generation as needed
        )
        
        return qa_pipeline

    except Exception as e:
        logger.error(f"Failed to load Q&A model: {str(e)}")
        return None
        
# def load_qa_model():
#     """Load question-answering model"""
#     try:
#         model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
#         qa_pipeline = pipeline(
#             "text-generation",
#             model="hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
#             model_kwargs={"torch_dtype": torch.bfloat16},
#             device_map="auto",
#             use_auth_token=os.getenv("HF_TOKEN")
#         )
#         return qa_pipeline
#     except Exception as e:
#         logger.error(f"Failed to load Q&A model: {str(e)}")
#         return None

def load_summarization_model():
    """Load summarization model"""
    try:
        summarizer = pipeline(
            "summarization", 
            model="sshleifer/distilbart-cnn-12-6",
            device=0 if torch.cuda.is_available() else -1
        )
        return summarizer
    except Exception as e:
        logger.error(f"Failed to load summarization model: {str(e)}")
        return None


@spaces.GPU(duration=180)
def process_audio(audio_file, translate=False):
    """Process audio file"""
    transcriber = ChunkedTranscriber(chunk_size=5, overlap=1)
    _translation, _output = transcriber.transcribe_audio(audio_file, translate=True)
    return _translation, _output
    # try:
    #     processor = AudioProcessor()
    #     language_segments, final_segments = processor.process_audio(audio_file, translate)
        
    #     # Format output
    #     transcription = ""
    #     full_text = ""
        
    #     # Add language detection information
    #     for segment in language_segments:
    #         transcription += f"Language: {segment['language']}\n"
    #         transcription += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
        
    #     # Add transcription/translation information
    #     transcription += "Transcription with language detection:\n\n"
    #     for segment in final_segments:
    #         transcription += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}):\n"
    #         transcription += f"Original: {segment['text']}\n"
    #         if translate and 'translated' in segment:
    #             transcription += f"Translated: {segment['translated']}\n"
    #             full_text += segment['translated'] + " "
    #         else:
    #             full_text += segment['text'] + " "
    #         transcription += "\n"
    #     return transcription, full_text
    # except Exception as e:
    #     logger.error(f"Audio processing failed: {str(e)}")
    #     raise gr.Error(f"Processing failed: {str(e)}")


# @spaces.GPU(duration=180)
# def summarize_text(text):
#     """Summarize text"""
#     try:
        
#         summarizer = load_summarization_model()
        
#         if summarizer is None:
#             return "Summarization model could not be loaded."
#         logger.info("Successfully loaded summarization Model")
#         # logger.info(f"\n\n {text}\n")

#         summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
#         return summary
#     except Exception as e:
#         logger.error(f"Summarization failed: {str(e)}")
#         return "Error occurred during summarization."


@spaces.GPU(duration=180)
def answer_question(context, question):
    """Answer questions about the text"""
    try:
        qa_pipeline = load_qa_model()
        if qa_pipeline is None:
            return "Q&A model could not be loaded."
        if not question : 
            return "Please enter your Question"

        messages = [
            # {"role": "system", "content": "You are a helpful assistant who can answer questions based on the given context."},
            {"role":"system", "content": SYSTEM_MESSAGE},
            {"role": "user", "content": f"Context: {context}\n Question: {question}"}
        ]
        response = qa_pipeline(messages, max_new_tokens=256)[0]['generated_text']
        logger.info(response)
        return response[-1]['content']
    except Exception as e:
        logger.error(f"Q&A failed: {str(e)}")
        return f"Error occurred during Q&A process: {str(e)}"


# Create Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# Automatic Speech Recognition for Indic Languages")
    
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(type="filepath")
            translate_checkbox = gr.Checkbox(label="Enable Translation")
            process_button = gr.Button("Process Audio")
        
        with gr.Column():
            # ASR_RESULT = gr.Textbox(label="Output")
            full_text_output = gr.Textbox(label="Full Text", lines=5)
            translation_output = gr.Textbox(label="Transcription/Translation", lines=10)
    
    with gr.Row():
        # with gr.Column():
        #     summarize_button = gr.Button("Summarize")
        #     summary_output = gr.Textbox(label="Summary", lines=3)
          
        with gr.Column():
            question_input = gr.Textbox(label="Ask a question about the transcription")
            answer_button = gr.Button("Get Answer")
            answer_output = gr.Textbox(label="Answer", lines=3)
    
    # Set up event handlers
    process_button.click(
        process_audio,
        inputs=[audio_input, translate_checkbox],
        outputs=[translation_output, full_text_output]
        # outputs=[ASR_RESULT]
    )
    # translated_text = ''.join(item['translated'] for item in ASR_RESULT if 'translated' in item)
    # summarize_button.click(
    #     summarize_text,
    #     # inputs=[ASR_RESULT],
    #     inputs=[translation_output],
    #     outputs=[summary_output]
    # )
    
    answer_button.click(
        answer_question,
        inputs=[full_text_output, question_input],
        outputs=[answer_output]
    )
    
    # Add system information
    gr.Markdown(f"""
    ## System Information
    - Device: {"CUDA" if torch.cuda.is_available() else "CPU"}
    - CUDA Available: {"Yes" if torch.cuda.is_available() else "No"}
    
    ## Features
    - Automatic language detection
    - High-quality transcription using MMS
    - Optional translation to English
    - Text summarization
    - Question answering
    """)

if __name__ == "__main__":
    iface.launch(server_port=None)