Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ import traceback
|
|
7 |
import sys
|
8 |
from audio_processing import AudioProcessor
|
9 |
import spaces
|
|
|
|
|
10 |
|
11 |
|
12 |
logging.basicConfig(
|
@@ -19,9 +21,10 @@ logger = logging.getLogger(__name__)
|
|
19 |
def load_qa_model():
|
20 |
"""Load question-answering model"""
|
21 |
try:
|
|
|
22 |
qa_pipeline = pipeline(
|
23 |
"text-generation",
|
24 |
-
model="
|
25 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
26 |
device_map="auto",
|
27 |
use_auth_token=os.getenv("HF_TOKEN")
|
@@ -48,32 +51,35 @@ def load_summarization_model():
|
|
48 |
@spaces.GPU(duration=60)
|
49 |
def process_audio(audio_file, translate=False):
|
50 |
"""Process audio file"""
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
|
78 |
except Exception as e:
|
79 |
logger.error(f"Audio processing failed: {str(e)}")
|
@@ -81,14 +87,14 @@ def process_audio(audio_file, translate=False):
|
|
81 |
|
82 |
|
83 |
@spaces.GPU(duration=60)
|
84 |
-
def summarize_text(
|
85 |
"""Summarize text"""
|
86 |
try:
|
87 |
summarizer = load_summarization_model()
|
88 |
if summarizer is None:
|
89 |
return "Summarization model could not be loaded."
|
90 |
|
91 |
-
summary = summarizer(
|
92 |
return summary
|
93 |
except Exception as e:
|
94 |
logger.error(f"Summarization failed: {str(e)}")
|
@@ -102,7 +108,8 @@ def answer_question(context, question):
|
|
102 |
qa_pipeline = load_qa_model()
|
103 |
if qa_pipeline is None:
|
104 |
return "Q&A model could not be loaded."
|
105 |
-
|
|
|
106 |
messages = [
|
107 |
{"role": "system", "content": "You are a helpful assistant who can answer questions based on the given context."},
|
108 |
{"role": "user", "content": f"Context: {context}\n\nQuestion: {question}"}
|
@@ -143,12 +150,14 @@ with gr.Blocks() as iface:
|
|
143 |
process_button.click(
|
144 |
process_audio,
|
145 |
inputs=[audio_input, translate_checkbox],
|
146 |
-
outputs=[transcription_output, full_text_output]
|
|
|
147 |
)
|
148 |
|
149 |
summarize_button.click(
|
150 |
summarize_text,
|
151 |
-
inputs=[
|
|
|
152 |
outputs=[summary_output]
|
153 |
)
|
154 |
|
|
|
7 |
import sys
|
8 |
from audio_processing import AudioProcessor
|
9 |
import spaces
|
10 |
+
from chunkedTranscriber import ChunkedTranscriber
|
11 |
+
from IPython.display import display
|
12 |
|
13 |
|
14 |
logging.basicConfig(
|
|
|
21 |
def load_qa_model():
|
22 |
"""Load question-answering model"""
|
23 |
try:
|
24 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
25 |
qa_pipeline = pipeline(
|
26 |
"text-generation",
|
27 |
+
model="hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
28 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
29 |
device_map="auto",
|
30 |
use_auth_token=os.getenv("HF_TOKEN")
|
|
|
51 |
@spaces.GPU(duration=60)
|
52 |
def process_audio(audio_file, translate=False):
|
53 |
"""Process audio file"""
|
54 |
+
transcriber = ChunkedTranscriber(chunk_size=5, overlap=1)
|
55 |
+
results = transcriber.transcribe_audio("/content/test_case_1.wav", translate=True)
|
56 |
+
return json.dumps(results, indent=4 )
|
57 |
+
# try:
|
58 |
+
# processor = AudioProcessor()
|
59 |
+
# language_segments, final_segments = processor.process_audio(audio_file, translate)
|
60 |
|
61 |
+
# # Format output
|
62 |
+
# transcription = ""
|
63 |
+
# full_text = ""
|
64 |
|
65 |
+
# # Add language detection information
|
66 |
+
# for segment in language_segments:
|
67 |
+
# transcription += f"Language: {segment['language']}\n"
|
68 |
+
# transcription += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
|
69 |
|
70 |
+
# # Add transcription/translation information
|
71 |
+
# transcription += "Transcription with language detection:\n\n"
|
72 |
+
# for segment in final_segments:
|
73 |
+
# transcription += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}):\n"
|
74 |
+
# transcription += f"Original: {segment['text']}\n"
|
75 |
+
# if translate and 'translated' in segment:
|
76 |
+
# transcription += f"Translated: {segment['translated']}\n"
|
77 |
+
# full_text += segment['translated'] + " "
|
78 |
+
# else:
|
79 |
+
# full_text += segment['text'] + " "
|
80 |
+
# transcription += "\n"
|
81 |
|
82 |
+
# return transcription, full_text
|
83 |
|
84 |
except Exception as e:
|
85 |
logger.error(f"Audio processing failed: {str(e)}")
|
|
|
87 |
|
88 |
|
89 |
@spaces.GPU(duration=60)
|
90 |
+
def summarize_text(results):
|
91 |
"""Summarize text"""
|
92 |
try:
|
93 |
summarizer = load_summarization_model()
|
94 |
if summarizer is None:
|
95 |
return "Summarization model could not be loaded."
|
96 |
|
97 |
+
summary = summarizer('\n'.join(d['translated'] for d in results if 'translated' in d), max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
98 |
return summary
|
99 |
except Exception as e:
|
100 |
logger.error(f"Summarization failed: {str(e)}")
|
|
|
108 |
qa_pipeline = load_qa_model()
|
109 |
if qa_pipeline is None:
|
110 |
return "Q&A model could not be loaded."
|
111 |
+
if not question :
|
112 |
+
return "Please enter your Question"
|
113 |
messages = [
|
114 |
{"role": "system", "content": "You are a helpful assistant who can answer questions based on the given context."},
|
115 |
{"role": "user", "content": f"Context: {context}\n\nQuestion: {question}"}
|
|
|
150 |
process_button.click(
|
151 |
process_audio,
|
152 |
inputs=[audio_input, translate_checkbox],
|
153 |
+
# outputs=[transcription_output, full_text_output]
|
154 |
+
outputs=[results]
|
155 |
)
|
156 |
|
157 |
summarize_button.click(
|
158 |
summarize_text,
|
159 |
+
inputs=[results],
|
160 |
+
# inputs=[full_text_output],
|
161 |
outputs=[summary_output]
|
162 |
)
|
163 |
|