Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,24 +23,31 @@ logger = logging.getLogger(__name__)
|
|
23 |
def load_qa_model():
|
24 |
"""Load question-answering model with long context support."""
|
25 |
try:
|
26 |
-
from transformers import
|
27 |
|
28 |
model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
|
29 |
|
30 |
# Load tokenizer
|
31 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.getenv("HF_TOKEN"))
|
32 |
-
tokenizer.model_max_length = 8192 # Configure tokenizer for long inputs
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Load the model with simplified rope_scaling configuration
|
35 |
model = AutoModelForCausalLM.from_pretrained(
|
36 |
model_id,
|
37 |
torch_dtype=torch.bfloat16,
|
|
|
38 |
device_map="auto",
|
39 |
rope_scaling={
|
40 |
"type": "dynamic", # Simplified type as expected by the model
|
41 |
"factor": 8.0 # Scaling factor to support longer contexts
|
42 |
},
|
43 |
-
use_auth_token=os.getenv("HF_TOKEN")
|
|
|
44 |
)
|
45 |
|
46 |
# Initialize the pipeline
|
|
|
23 |
def load_qa_model():
|
24 |
"""Load question-answering model with long context support."""
|
25 |
try:
|
26 |
+
from transformers import AutoModelForCausalLM, AwqConfig
|
27 |
|
28 |
model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
|
29 |
|
30 |
# Load tokenizer
|
31 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.getenv("HF_TOKEN"))
|
|
|
32 |
|
33 |
+
quantization_config = AwqConfig(
|
34 |
+
bits=4,
|
35 |
+
fuse_max_seq_len=8192, # Configure tokenizer for long inputs
|
36 |
+
do_fuse=True,
|
37 |
+
)
|
38 |
+
|
39 |
# Load the model with simplified rope_scaling configuration
|
40 |
model = AutoModelForCausalLM.from_pretrained(
|
41 |
model_id,
|
42 |
torch_dtype=torch.bfloat16,
|
43 |
+
low_cpu_mem_usage=True,
|
44 |
device_map="auto",
|
45 |
rope_scaling={
|
46 |
"type": "dynamic", # Simplified type as expected by the model
|
47 |
"factor": 8.0 # Scaling factor to support longer contexts
|
48 |
},
|
49 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
50 |
+
quantization_config=quantization_config
|
51 |
)
|
52 |
|
53 |
# Initialize the pipeline
|