File size: 22,445 Bytes
2d9c70c
 
 
 
 
 
 
 
 
a684ff8
2d9c70c
 
 
2ce0cc2
2d9c70c
 
 
 
 
 
 
90e7c81
f14f2bb
90e7c81
2d9c70c
f14f2bb
 
2d9c70c
 
 
 
 
 
 
97e6937
 
da65ce9
 
90e7c81
da65ce9
90e7c81
 
2d9c70c
 
 
 
 
 
 
 
f14f2bb
 
2d9c70c
 
 
 
2ce0cc2
6ecb679
 
 
 
 
2ce0cc2
2d9c70c
 
 
 
2ce0cc2
 
2d9c70c
 
 
 
 
f14f2bb
2d9c70c
f14f2bb
 
2d9c70c
f14f2bb
 
 
 
 
2d9c70c
 
 
 
 
 
 
f14f2bb
 
2d9c70c
 
 
 
 
 
 
 
 
 
 
 
f14f2bb
2d9c70c
 
2ce0cc2
2d9c70c
2ce0cc2
f14f2bb
2d9c70c
f14f2bb
e2f5761
85f65ce
2d9c70c
85f65ce
 
 
 
 
2d9c70c
 
f14f2bb
 
85f65ce
2ce0cc2
f14f2bb
2d9c70c
f14f2bb
2d9c70c
f14f2bb
 
 
2d9c70c
 
 
 
f14f2bb
90e7c81
f14f2bb
2d9c70c
 
 
 
a684ff8
 
 
f14f2bb
2ce0cc2
90e7c81
f14f2bb
 
 
2d9c70c
 
a684ff8
 
 
 
f14f2bb
97e6937
a684ff8
 
 
 
 
f14f2bb
 
 
 
 
 
a684ff8
f14f2bb
 
 
 
 
 
 
 
 
 
 
 
2d9c70c
 
 
 
90e7c81
f14f2bb
 
 
2d9c70c
f14f2bb
2d9c70c
f14f2bb
 
2d9c70c
 
 
97e6937
2d9c70c
 
97e6937
f14f2bb
2d9c70c
97e6937
 
2d9c70c
97e6937
 
 
 
 
 
 
 
 
 
 
90e7c81
f14f2bb
 
 
 
 
 
 
 
 
 
 
 
90e7c81
f14f2bb
 
 
 
 
 
 
90e7c81
2d9c70c
 
 
f14f2bb
 
 
 
2d9c70c
f14f2bb
90e7c81
2d9c70c
2ce0cc2
 
f14f2bb
 
2d9c70c
2ce0cc2
85f65ce
 
 
 
f14f2bb
2ce0cc2
f14f2bb
 
2d9c70c
 
f14f2bb
 
 
2d9c70c
 
 
 
 
 
 
 
90e7c81
f14f2bb
 
 
 
 
 
 
 
2d9c70c
 
 
f14f2bb
 
 
2d9c70c
 
 
 
97e6937
2d9c70c
 
 
 
 
97e6937
 
 
 
2d9c70c
 
90e7c81
 
a684ff8
90e7c81
97e6937
2d9c70c
90e7c81
2d9c70c
 
e2f5761
 
 
 
 
90e7c81
 
 
2d9c70c
 
 
 
97e6937
2d9c70c
 
90e7c81
 
 
 
 
 
 
 
 
 
 
97e6937
90e7c81
 
 
97e6937
90e7c81
 
 
2d9c70c
90e7c81
97e6937
2d9c70c
6a95b89
2d9c70c
a684ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d9c70c
f14f2bb
2d9c70c
 
f14f2bb
2d9c70c
4564048
2d9c70c
 
90e7c81
2d9c70c
 
 
90e7c81
2d9c70c
 
 
90e7c81
 
f14f2bb
 
 
 
2d9c70c
 
97e6937
90e7c81
 
 
 
f14f2bb
 
90e7c81
2ce0cc2
 
 
90e7c81
a684ff8
 
2d9c70c
 
 
f14f2bb
 
 
 
 
 
 
 
2d9c70c
 
 
 
f14f2bb
2d9c70c
 
 
 
f14f2bb
2d9c70c
 
 
 
 
 
f14f2bb
2d9c70c
 
f14f2bb
 
 
 
 
 
 
2d9c70c
 
 
 
 
f14f2bb
2d9c70c
6a95b89
 
f14f2bb
6a95b89
 
 
a684ff8
2ce0cc2
2d9c70c
 
 
 
f14f2bb
2d9c70c
f14f2bb
6a95b89
 
 
a684ff8
2ce0cc2
2d9c70c
 
 
a684ff8
97e6937
a684ff8
2ce0cc2
2d9c70c
 
f14f2bb
2d9c70c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import ast
from collections import defaultdict
from functools import partial
import itertools
import os
import re
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from datetime import datetime
from typing import Any

import gradio as gr
import pandas as pd
from datatrove.io import DataFolder

FALLBACK_TOKEN_NAME = "HF_TOKEN"

def is_arary_like(x):
    return isinstance(x, list) or isinstance(x, tuple) or isinstance(x, np.ndarray)

def get_task_type(df):
    # Compatibility with old lighteval
    # [[Pour calculer le bénéfice net de C]] in new lighteval, "Pour calculer le bénéfice net de C" in old lighteval
    if all(isinstance(pred, str) or (is_arary_like(pred) and all(isinstance(item, str) for item in pred)) for pred in df['predictions'].iloc[0]):
        return "generative"
    
    # [["1", "2"], ["3", "4"]] in new lighteval, ["1", "2"] in old lighteval
    if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]):
        return "multiple_choice"
    return "mixed"

def fix_df(df):
    # For some reason some metrics and predictions are stored as strings
    for col in ["predictions", "metrics", "choices", "gold", "gold_index"]:
        if col in df.columns:
            df[col] = [ast.literal_eval(x) if isinstance(x, str) else x for x in df[col].values]
        
        if col == "predictions":
            # For multiple choice
            df[col] = df[col].apply(lambda x: [[z[0] for z in x]] if is_arary_like(x) and len(x[0]) == 2 else x)
            # For unwraping of generative
            df[col] = df[col].apply(lambda x: x[0] if is_arary_like(x) and len(x) == 1 else x)
    return df

def get_run_name_seed(run_name):
    if "-seed-" not in run_name:
        return run_name, 5
    run_name, seed = run_name.split("-seed-")
    return run_name, int(seed)


def fetch_repo_structure(results_uri, split_checkpoints=False, oauth_token: gr.OAuthToken | None = None):
    token = os.environ.get(FALLBACK_TOKEN_NAME)
    if oauth_token:
        token = oauth_token.token

    data_folder = DataFolder(results_uri, token=token)
    try:
        runs = [f.removeprefix("details/") for f in data_folder.list_files("details", recursive=False, include_directories=True) if f != "details"]
    except Exception as e:
        print(f"Error fetching repo structure: {e}")
        runs = []

    if not runs:
        return {}, gr.update(choices=[], value=None)

    def process_run(run):
        run_files = [f.removeprefix(f"details/{run}/") for f in data_folder.list_files(f"details/{run}", recursive=False, include_directories=True) if f != f"details/{run}"]
        return run, run_files

    with ThreadPoolExecutor() as executor:
        results = list(executor.map(process_run, runs))

    checkpoints_dict = dict(results)
    runs = list(checkpoints_dict.keys())

    if not split_checkpoints:
        runs = [f"{run}/{checkpoint}" for run, checkpoints in checkpoints_dict.items() for checkpoint in checkpoints]

    return checkpoints_dict, gr.update(choices=runs, value=[])

def update_checkpoints(selected_runs, checkpoints, split_checkpoints):
    if not selected_runs or not split_checkpoints:
        return gr.update(choices=[], value=[])
    
    common_checkpoints = set(checkpoints[selected_runs[0]])
    for run in selected_runs[1:]:
        common_checkpoints.intersection_update(set(checkpoints[run]))
    
    common_checkpoints = sorted(list(common_checkpoints))
    
    return gr.update(choices=common_checkpoints, value=[common_checkpoints[0]] if common_checkpoints else [])



def select_runs_by_regex(runs, current_selected, regex_to_select):
    comp_re = re.compile(regex_to_select)
    return list(sorted(set((current_selected if current_selected else []) +
                           [run for run in runs if comp_re.fullmatch(run)])))

def select_runs_by_language(runs, current_selected, language):
    if language:
        return select_runs_by_regex(runs, current_selected, f".*-{language}-.*")
    return current_selected

def fetch_available_tasks(results_uri, selected_run_checkpoint: list[str]) -> dict[str, dict[str, str]]:
    token = os.environ.get(FALLBACK_TOKEN_NAME)
    
    data_folder = DataFolder(results_uri, token=token)
    all_tasks = defaultdict(lambda: defaultdict(dict))
    
    for run_checkpoint in selected_run_checkpoint:
        try:
            details_folder = f"details/{run_checkpoint}"
            files = data_folder.list_files(details_folder, recursive=True)
            result_files = [f.removeprefix(details_folder + "/") for f in files if f.endswith('.parquet') or f.endswith('.json')]
            
            for full_filename in result_files:
                file_ext = '.parquet' if full_filename.endswith('.parquet') else '.json'
                # new lighteval has uses date/task_name_date, old lighteval uses task_name_date
                filename = full_filename.replace(file_ext, '').split("/")[-1]
                task_name, date_str = filename.rsplit('_', 1)
                date = datetime.strptime(date_str, '%Y-%m-%dT%H-%M-%S.%f')
                
                if run_checkpoint not in all_tasks[task_name] or date > all_tasks[task_name][run_checkpoint]['date']:
                    all_tasks[task_name][run_checkpoint] = {'filename': full_filename, 'date': date}

        except FileNotFoundError:
            print(f"Checkpoint not found for run: {run_checkpoint}")
    
    # Get tasks that have data for all selected runs
    available_tasks = {
        task: {run_checkpoint: info['filename'] for run_checkpoint, info in runs_info.items()}
        for task, runs_info in all_tasks.items()
        if set(runs_info.keys()) == set(selected_run_checkpoint)
    }
    
    return available_tasks

def fetch_run_results(results_uri, selected_run_checkpoint: list[str],
                                   oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()):
    task_runs_dict = fetch_available_tasks(results_uri, selected_run_checkpoint)
    task_names = list(task_runs_dict.keys())
    return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict


def render_table(df: pd.DataFrame | None, selected_run_checkpoint: list[str], 
                metric_names: list[str], filter_different: bool = False,
                n_samples: int = 100):
    if df is None or not selected_run_checkpoint or not metric_names:
        return None, "0"
    
    kept_metrics = [f"metric_{metric_name}_{run_checkpoint}" 
                   for run_checkpoint in selected_run_checkpoint 
                   for metric_name in metric_names]
    other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
    df = df.drop(columns=other_metrics)
    
    if filter_different:
        df = df[df.apply(lambda row: has_different_values(row, selected_run_checkpoint, metric_names), axis=1)]
    
    df = shorten_column_names(df, selected_run_checkpoint, metric_names)

    # Get total number of samples before limiting
    total_samples = len(df)
    
    # Take first n_samples instead of random sampling
    df = df.head(n_samples)
    
    # Get column widths for better display
    column_widths = get_column_widths(df)
    return gr.Dataframe(
        value=df,
        column_widths=column_widths
    ), str(total_samples)

def update_selected_run_checkpoint(selected_runs: list[str] | None, selected_checkpoint: list[str] | None, split_checkpoints: bool):
    if not selected_runs:
        return []
        
    # In this case we simply return the selected runs which already contain checkpoints
    if not split_checkpoints:
        return selected_runs

    # Otherwise combine runs with checkpoints
    return [f"{run}/{checkpoint}" for run in selected_runs for checkpoint in (selected_checkpoint if selected_checkpoint else [])]


def get_column_widths(df):
    column_widths = []
    for col in df.columns:
        if col == "prompt":
            column_widths.append("300px")  # Fixed width with overflow
        elif col.startswith("generation_"):
            column_widths.append("200px")
        elif col in ["choices", "gold"]:
            column_widths.append("100px")
        else:
            # Metrics
            column_widths.append("50px")  # Default width for other columns
    return column_widths


def shorten_column_names(df, run_names: list[str], metric_names: list[str]):
    """
    Turns metric columns (metric_{metric}_{run_name}) into {metric}_i
    Turns generation_{run_name} into generation_i
    Also truncates full_prompt and generation columns to 100 chars with expandable view
    """
    # Handle metric columns
    columns_to_rename = {}
    for idx, run_name in enumerate(run_names):
        for metric_name in metric_names:
            original_metric_column = f"metric_{metric_name}_{run_name}"
            if original_metric_column in df.columns:
                columns_to_rename[original_metric_column] = f"{metric_name}_{idx}"
        
        original_generation_column = f"generation_{run_name}"
        if original_generation_column in df.columns:
            columns_to_rename[original_generation_column] = f"generation_{idx}"
    
    # Rename columns in a single operation
    df = df.rename(columns=columns_to_rename)
    
    # Add markdown formatting to prompt and generation columns for truncation with expansion
    def truncate_with_details(text: str | list[str]):
        if is_arary_like(text) and all(isinstance(item, str) for item in text):
            return [truncate_with_details(item) for item in text]
        elif isinstance(text, str):
            text = text.replace('\n', ' ').strip()  # Replace newlines with spaces
            if len(text) <= 100:
                return text
            return f"""<details><summary>{text[:100]}...</summary>\n\n{text[100:]}</details>"""
        
        return text
    
    if 'prompt' in df.columns:
        df['prompt'] = df['prompt'].apply(truncate_with_details)
    
    # Apply the same truncation to all generation columns
    generation_columns = [col for col in df.columns if col.startswith('generation_')]

    for col in generation_columns:
        df[col] = df[col].apply(truncate_with_details)
    
    return df


def unwrap_selected_run_checkpoint(selected_run_checkpoint: list[str]) -> list[str]:
    return selected_run_checkpoint  # Now just returns the list directly

def load_task_data(results_uri, selected_run_checkpoint: list[str], task_name, tasks_files, prompt_column, progress=gr.Progress()):
    token = os.environ.get(FALLBACK_TOKEN_NAME)
    if not selected_run_checkpoint or not task_name:
        return None, None
    
    data_folder = DataFolder(f"filecache::{results_uri}", token=token, cache_storage="./results-cache")
    
    def fetch_run_file(run_checkpoint):
        file_path = f"details/{run_checkpoint}/{tasks_files[task_name][run_checkpoint]}"
        try:
            with data_folder.open(file_path, "rb") as f:
                if file_path.endswith('.parquet'):
                    df = pd.read_parquet(f)
                else:
                    df = pd.read_json(f, lines=True)
            return df, run_checkpoint
        except FileNotFoundError:
            print(f"File not found: {tasks_files[task_name][run_checkpoint]}")
            return None, run_checkpoint

    with ThreadPoolExecutor() as pool:
        results = list(progress.tqdm(pool.map(fetch_run_file, selected_run_checkpoint), 
                                   total=len(selected_run_checkpoint),
                                   desc="Fetching run data..."))
    
    dfs = [fix_df(df) for df, _ in results if df is not None]
    run_names = [run for _, run in results if run is not None]

    if not dfs:
        return None, None, gr.update(choices=[], value=None)
    
    task_type = get_task_type(dfs[0])
    def prepare_df(df, run_name, task_type, prompt_column):
        # Mixed in lighteval-old will look like this: ['광', -13.964999198913574, -13.539217948913574, -13.964999198913574, -13.539217948913574, -12.90467357635498, -13.07825756072998]
        # Generative in lighteval-old will look like this "prediction"
        # Multiple choice in lighteval-old will look like this ["choice1", "choice2"]
        # [np.float64(-132.9295196533203), np.float64(-207.1309356689453), np.float64(-186.64553833007812), np.float64(-230.01414489746094), np.float64(-132.9295196533203), np.float64(-207.1309356689453), np.float64(-186.64553833007812), np.float64(-230.01414489746094), np.float64(-128.63824462890625), np.float64(-203.9550018310547), np.float64(-185.35267639160156), np.float64(-228.23837280273438)]

        # For the new lighteval we have:
        # Generative: [[Pour calculer le bénéfice net de C]]

        def get_choice_predictions(df, task_type):
            predictions = df['predictions']
            if task_type == "generative":
                # This is strange representation in new lighteval...
                if is_arary_like(predictions) and all(is_arary_like(item) for item in predictions):
                    return predictions[0]
                return predictions
            
            if task_type == "multiple_choice":
                n_choices = len(df['choices'])
                return [pred[0] for pred in predictions[:n_choices]]
            
            if task_type == "mixed":
                return predictions[0]
            
            return predictions
        
        generative_columns = {
            f"generation_{run_name}": df.apply(partial(get_choice_predictions, task_type=task_type), axis=1)
        } if task_type == "generative" or task_type == "mixed" else {}

        prepared_df = pd.DataFrame({
            'prompt': df[prompt_column],
            'choices': df['choices'].apply(tuple),  # Convert lists to tuples
            'gold': df['gold'].apply(lambda x: tuple(x) if is_arary_like(x) else x),  # Convert lists to tuples
            'gold_index': df['gold_index'],
            **generative_columns,
        })
        
        # For some reason some metrics are stored as strings
        metrics = df['metrics']
        available_metrics = set(metric for row_metrics in metrics for metric in row_metrics)
        for metric_key in available_metrics:
            prepared_df[f'metric_{metric_key}_{run_name}'] = [metric.get(metric_key, None) for metric in metrics]
        
        # Merge rows with the same full_prompt
        prepared_df = prepared_df.groupby('prompt').agg(lambda x: next((item for item in x if item is not None), None)).reset_index()
        prepared_df["prompt"] = prepared_df["prompt"].astype(str)
        return prepared_df
    
    def get_gold_label(df, task_type):
        if task_type == "generative":
            return df['gold']
        return df['gold_index']

    # Prepare the first DataFrame with choices and gold
    # Join all prepared DataFrames
    prepared_dfs = [
        prepare_df(df, run_name, task_type, prompt_column)
        for df, run_name in zip(dfs, run_names)
    ]

    combined_df = prepared_dfs[0]
    for idx, prepared_df in enumerate(prepared_dfs[1:]):
        combined_df = combined_df.merge(prepared_df, how='outer', on=("prompt", "gold"), suffixes=(None, f"_{idx}"))
    to_keep = ["prompt", "gold"]

    if task_type in ["multiple_choice", "mixed"]:
        to_keep.append("choices")
    elif task_type == "generative":
        to_keep.extend([col for col in combined_df.columns if col.startswith("generation_")])

    combined_df['gold'] = combined_df.apply(lambda row: get_gold_label(row, task_type), axis=1).values
    metric_cols = [col for col in combined_df.columns if col.startswith("metric_")]
    combined_df = combined_df[to_keep + metric_cols]

    available_metrics = list(set("_".join(col.split('_')[1:-1]) for col in metric_cols))
    chosen_metrics = available_metrics[:1]

    return combined_df, gr.update(choices=available_metrics, value=chosen_metrics)

def has_different_values(row: pd.Series, selected_run_checkpoint: list[str], metric_names: list[str]) -> bool:
    """Check if a row has different values across runs for any metric or generation."""
    # Check generations
    generation_cols = [f"generation_{run}" for run in selected_run_checkpoint]
    generation_cols = [col for col in generation_cols if col in row.index]
    if generation_cols:
        generations = row[generation_cols].dropna()
        # Convert lists to tuples for comparison and handle string values
        unique_generations = set()
        for gen in generations:
            if isinstance(gen, list):
                unique_generations.add(tuple(gen))
            else:
                unique_generations.add(gen)
        if len(unique_generations) > 1:
            return True
    
    # Check metrics
    for metric in metric_names:
        metric_cols = [f"metric_{metric}_{run}" for run in selected_run_checkpoint]
        metric_cols = [col for col in metric_cols if col in row.index]
        if metric_cols:
            metrics = row[metric_cols].dropna()
            if len(metrics.unique()) > 1:
                return True
    
    return False

with gr.Blocks() as demo:
    available_runs_checkpoints = gr.State({})
    results_df_full = gr.State(None)
    tasks_files = gr.State({})
    selected_run_checkpoint = gr.State([])
    login_button = gr.LoginButton(visible=False)
    results_uri = gr.Textbox(label="Fsspec results URI", value="s3://fineweb-v1/evals/test/", visible=True, placeholder="s3://bucket/path/to/results")
    with gr.Column():
        gr.Markdown("# FineWeb experiments results explorer")
        split_checkpoints = gr.Checkbox(label="Split checkpoints from models", value=True)
        with gr.Row():
            with gr.Column():
                select_by_regex_text = gr.Textbox(label="Regex to select runs",
                                                value="ind_minhash(-CC-MAIN-|_)\\d{4}-\\d{2}-seed.*")
                select_by_regex_button = gr.Button("Select matching runs")
            with gr.Column():
                select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"], 
                                               interactive=True, label="Select by language", 
                                               info="Choose a language to prefill the regex")
        with gr.Row() as run_selection_row:
            selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs")
            checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint", multiselect=True)
        
        fetch_res = gr.Button("Fetch results")
        task_name = gr.Dropdown(choices=[], interactive=True, label="Task name")
        metric_names = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Metric")
        results_df = gr.Dataframe(
            interactive=False,
            wrap=True,
            line_breaks=True,
            datatype="markdown",
            column_widths=get_column_widths(pd.DataFrame())  # Initialize with empty dataframe
        )
        with gr.Row():
            with gr.Column():
                num_samples = gr.Text(interactive=False, label="# Samples")
                prompt_column = gr.Radio(choices=["full_prompt", "example"], label="Prompt display", value="example")
                filter_different = gr.Checkbox(label="Show only samples with differences", value=False)
                n_samples_input = gr.Number(value=100, label="Number of samples to show", minimum=1, maximum=1000, step=1)

    # Run selection
    gr.on(
        triggers=[split_checkpoints.change],
        fn=lambda split_checkpoints: gr.update(visible=split_checkpoints),
        inputs=[split_checkpoints],
        outputs=[checkpoint]
    )
    gr.on(
        triggers=[results_uri.change, split_checkpoints.change],
        fn=fetch_repo_structure, inputs=[results_uri, split_checkpoints], outputs=[available_runs_checkpoints, selected_runs],
    )
    gr.on(
        triggers=[select_by_regex_button.click],
        fn=select_runs_by_regex,
        inputs=[available_runs_checkpoints, selected_runs, select_by_regex_text], outputs=[selected_runs]
    )
    gr.on(
        triggers=[select_by_language.change],
        fn=select_runs_by_language,
        inputs=[available_runs_checkpoints, selected_runs, select_by_language], outputs=[selected_runs]
    )
    
    # Update checkpoints based on selected runs
    gr.on(
        triggers=[selected_runs.change],
        fn=update_checkpoints,
        inputs=[selected_runs, available_runs_checkpoints, split_checkpoints],
        outputs=[checkpoint]
    )

    gr.on(
        triggers=[checkpoint.change, selected_runs.change],
        fn=update_selected_run_checkpoint,
        inputs=[selected_runs, checkpoint, split_checkpoints],
        outputs=[selected_run_checkpoint]
    )
    
    # Fetch available tasks
    gr.on(
        triggers=[fetch_res.click],
        fn=fetch_run_results,
        inputs=[results_uri, selected_run_checkpoint],
        outputs=[task_name, tasks_files]
    ).then(
        fn=load_task_data,
        inputs=[results_uri, selected_run_checkpoint, task_name, tasks_files, prompt_column],
        outputs=[results_df_full, metric_names]
    ).then(
        fn=render_table,
        inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input],
        outputs=[results_df, num_samples]
    )

    # Update results when task name or metric changes
    gr.on(
        triggers=[task_name.input, prompt_column.input],
        fn=load_task_data,
        inputs=[results_uri, selected_run_checkpoint, task_name, tasks_files, prompt_column],
        outputs=[results_df_full, metric_names]
    ).then(
        fn=render_table,
        inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input],
        outputs=[results_df, num_samples]
    )
    
    gr.on(
        triggers=[metric_names.input, filter_different.change, n_samples_input.change],
        fn=render_table,
        inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input],
        outputs=[results_df, num_samples]
    )
    
    demo.load(fn=fetch_repo_structure, inputs=[results_uri, split_checkpoints], outputs=[available_runs_checkpoints, selected_runs])

demo.launch()