Spaces:
Running
Running
small prompt + only show prompt
Browse files
app.py
CHANGED
@@ -18,7 +18,8 @@ def is_arary_like(x):
|
|
18 |
return isinstance(x, list) or isinstance(x, tuple) or isinstance(x, np.ndarray)
|
19 |
|
20 |
def get_task_type(df):
|
21 |
-
|
|
|
22 |
return "generative"
|
23 |
if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]):
|
24 |
return "multiple_choice"
|
@@ -31,7 +32,10 @@ def fix_df(df):
|
|
31 |
df[col] = [ast.literal_eval(x) if isinstance(x, str) else x for x in df[col].values]
|
32 |
|
33 |
if col == "predictions":
|
|
|
34 |
df[col] = df[col].apply(lambda x: [[z[0] for z in x]] if is_arary_like(x) and len(x[0]) == 2 else x)
|
|
|
|
|
35 |
return df
|
36 |
|
37 |
def get_run_name_seed(run_name):
|
@@ -116,8 +120,7 @@ def fetch_available_tasks(results_uri, runs_to_fetch, checkpoint) -> dict[str, d
|
|
116 |
return available_tasks
|
117 |
|
118 |
def fetch_run_results(results_uri, runs_to_fetch, checkpoint,
|
119 |
-
|
120 |
-
|
121 |
task_runs_dict = fetch_available_tasks(results_uri, runs_to_fetch, checkpoint)
|
122 |
task_names = list(task_runs_dict.keys())
|
123 |
return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict
|
@@ -126,21 +129,21 @@ def fetch_run_results(results_uri, runs_to_fetch, checkpoint,
|
|
126 |
def render_table(df, selected_runs, metric_names):
|
127 |
if df is None or not selected_runs or not metric_names:
|
128 |
return None, "0"
|
|
|
129 |
kept_metrics = [f"metric_{metric_name}_{run_name}" for run_name in selected_runs for metric_name in metric_names]
|
130 |
other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
|
131 |
df = df.drop(columns=other_metrics)
|
132 |
-
# widths = get_column_widths(df)
|
133 |
df = shorten_column_names(df, selected_runs, metric_names)
|
134 |
|
135 |
# Sample 100
|
136 |
n_samples = len(df)
|
137 |
df = df.sample(n=min(100, len(df)), random_state=42)
|
138 |
-
return df, n_samples
|
139 |
|
140 |
def get_column_widths(df):
|
141 |
column_widths = []
|
142 |
for col in df.columns:
|
143 |
-
if col == "
|
144 |
column_widths.append("300px")
|
145 |
elif col in ["choices", "gold"]:
|
146 |
column_widths.append("250px")
|
@@ -155,9 +158,9 @@ def shorten_column_names(df, run_names: list[str], metric_names: list[str]):
|
|
155 |
"""
|
156 |
Turns metric columns (metric_{metric}_{run_name}) into {metric}_i
|
157 |
Turns generation_{run_name} into generation_i
|
|
|
158 |
"""
|
159 |
# Handle metric columns
|
160 |
-
# Aggregate columns to rename
|
161 |
columns_to_rename = {}
|
162 |
for idx, run_name in enumerate(run_names):
|
163 |
for metric_name in metric_names:
|
@@ -171,13 +174,20 @@ def shorten_column_names(df, run_names: list[str], metric_names: list[str]):
|
|
171 |
|
172 |
# Rename columns in a single operation
|
173 |
df = df.rename(columns=columns_to_rename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
return df
|
175 |
|
176 |
|
177 |
-
def load_task_data(results_uri, runs_to_fetch, checkpoint, task_name, tasks_files, progress=gr.Progress()):
|
178 |
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
179 |
if not runs_to_fetch or not task_name:
|
180 |
-
return None, None
|
181 |
|
182 |
|
183 |
|
@@ -204,9 +214,8 @@ def load_task_data(results_uri, runs_to_fetch, checkpoint, task_name, tasks_file
|
|
204 |
return None, None, gr.update(choices=[], value=None)
|
205 |
|
206 |
task_type = get_task_type(dfs[0])
|
207 |
-
def prepare_df(df, run_name, task_type):
|
208 |
def get_choice_predictions(df, task_type):
|
209 |
-
# For some evals it's string for other it's list
|
210 |
predictions = df['predictions']
|
211 |
if task_type == "generative":
|
212 |
return predictions
|
@@ -223,24 +232,25 @@ def load_task_data(results_uri, runs_to_fetch, checkpoint, task_name, tasks_file
|
|
223 |
generative_columns = {
|
224 |
f"generation_{run_name}": df.apply(partial(get_choice_predictions, task_type=task_type), axis=1)
|
225 |
} if task_type == "generative" or task_type == "mixed" else {}
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
|
230 |
prepared_df = pd.DataFrame({
|
231 |
-
'
|
|
|
|
|
|
|
232 |
**generative_columns,
|
233 |
})
|
|
|
234 |
# For some reason some metrics are stored as strings
|
235 |
metrics = df['metrics']
|
236 |
-
# Assume all metrics are the same
|
237 |
available_metrics = set(metric for row_metrics in metrics for metric in row_metrics)
|
238 |
for metric_key in available_metrics:
|
239 |
prepared_df[f'metric_{metric_key}_{run_name}'] = [metric.get(metric_key, None) for metric in metrics]
|
240 |
|
241 |
# Merge rows with the same full_prompt
|
242 |
-
prepared_df = prepared_df.groupby('
|
243 |
-
|
|
|
244 |
|
245 |
def get_gold_label(df, task_type):
|
246 |
if task_type == "generative":
|
@@ -248,20 +258,27 @@ def load_task_data(results_uri, runs_to_fetch, checkpoint, task_name, tasks_file
|
|
248 |
return df['gold_index']
|
249 |
|
250 |
# Prepare the first DataFrame with choices and gold
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
if task_type in ["multiple_choice", "mixed"]:
|
253 |
-
|
|
|
|
|
254 |
|
255 |
-
combined_df['gold'] =
|
256 |
-
|
257 |
-
|
258 |
-
for df, run_name in zip(dfs, run_names):
|
259 |
-
prepared_df = prepare_df(df, run_name, task_type)
|
260 |
-
combined_df = combined_df.join(prepared_df, how='outer')
|
261 |
-
|
262 |
|
263 |
-
available_metrics = list(set("_".join(col.split('_')[1:-1]) for col in
|
264 |
-
combined_df = combined_df.reset_index()
|
265 |
chosen_metrics = available_metrics[:1]
|
266 |
|
267 |
return combined_df, gr.update(choices=available_metrics, value=chosen_metrics)
|
@@ -274,24 +291,31 @@ with gr.Blocks() as demo:
|
|
274 |
results_uri = gr.Textbox(label="Results URI", value="s3://fineweb-multilingual-v1/evals/test/", visible=True)
|
275 |
with gr.Column():
|
276 |
gr.Markdown("# FineWeb experiments results explorer")
|
|
|
277 |
with gr.Row():
|
278 |
with gr.Column():
|
279 |
select_by_regex_text = gr.Textbox(label="Regex to select runs",
|
280 |
-
|
281 |
select_by_regex_button = gr.Button("Select matching runs")
|
282 |
with gr.Column():
|
283 |
select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"],
|
284 |
-
|
285 |
-
|
286 |
selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs")
|
287 |
-
checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint")
|
288 |
fetch_res = gr.Button("Fetch results")
|
289 |
task_name = gr.Dropdown(choices=[], interactive=True, label="Task name")
|
290 |
metric_names = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Metric")
|
291 |
-
results_df = gr.Dataframe(
|
|
|
|
|
|
|
|
|
|
|
292 |
with gr.Row():
|
293 |
with gr.Column():
|
294 |
num_samples = gr.Text(interactive=False, label="# Samples")
|
|
|
295 |
|
296 |
# Run selection
|
297 |
gr.on(
|
@@ -325,7 +349,7 @@ with gr.Blocks() as demo:
|
|
325 |
outputs=[task_name, tasks_files]
|
326 |
).then(
|
327 |
fn=load_task_data,
|
328 |
-
inputs=[results_uri, selected_runs, checkpoint, task_name, tasks_files],
|
329 |
outputs=[results_df_full, metric_names]
|
330 |
).then(
|
331 |
fn=render_table,
|
@@ -337,7 +361,7 @@ with gr.Blocks() as demo:
|
|
337 |
gr.on(
|
338 |
triggers=[task_name.input],
|
339 |
fn=load_task_data,
|
340 |
-
inputs=[results_uri, selected_runs, checkpoint, task_name, tasks_files],
|
341 |
outputs=[results_df_full, metric_names]
|
342 |
).then(
|
343 |
fn=render_table,
|
|
|
18 |
return isinstance(x, list) or isinstance(x, tuple) or isinstance(x, np.ndarray)
|
19 |
|
20 |
def get_task_type(df):
|
21 |
+
# Compatibility with old lighteval
|
22 |
+
if all(isinstance(pred, str) or (is_arary_like(pred) and all(isinstance(item, str) for item in pred)) for pred in df['predictions'].iloc[0]):
|
23 |
return "generative"
|
24 |
if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]):
|
25 |
return "multiple_choice"
|
|
|
32 |
df[col] = [ast.literal_eval(x) if isinstance(x, str) else x for x in df[col].values]
|
33 |
|
34 |
if col == "predictions":
|
35 |
+
# For multiple choice
|
36 |
df[col] = df[col].apply(lambda x: [[z[0] for z in x]] if is_arary_like(x) and len(x[0]) == 2 else x)
|
37 |
+
# For unwraping of generative
|
38 |
+
df[col] = df[col].apply(lambda x: x[0] if is_arary_like(x) and len(x) == 1 else x)
|
39 |
return df
|
40 |
|
41 |
def get_run_name_seed(run_name):
|
|
|
120 |
return available_tasks
|
121 |
|
122 |
def fetch_run_results(results_uri, runs_to_fetch, checkpoint,
|
123 |
+
oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()):
|
|
|
124 |
task_runs_dict = fetch_available_tasks(results_uri, runs_to_fetch, checkpoint)
|
125 |
task_names = list(task_runs_dict.keys())
|
126 |
return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict
|
|
|
129 |
def render_table(df, selected_runs, metric_names):
|
130 |
if df is None or not selected_runs or not metric_names:
|
131 |
return None, "0"
|
132 |
+
|
133 |
kept_metrics = [f"metric_{metric_name}_{run_name}" for run_name in selected_runs for metric_name in metric_names]
|
134 |
other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
|
135 |
df = df.drop(columns=other_metrics)
|
|
|
136 |
df = shorten_column_names(df, selected_runs, metric_names)
|
137 |
|
138 |
# Sample 100
|
139 |
n_samples = len(df)
|
140 |
df = df.sample(n=min(100, len(df)), random_state=42)
|
141 |
+
return df, str(n_samples)
|
142 |
|
143 |
def get_column_widths(df):
|
144 |
column_widths = []
|
145 |
for col in df.columns:
|
146 |
+
if col == "prompt":
|
147 |
column_widths.append("300px")
|
148 |
elif col in ["choices", "gold"]:
|
149 |
column_widths.append("250px")
|
|
|
158 |
"""
|
159 |
Turns metric columns (metric_{metric}_{run_name}) into {metric}_i
|
160 |
Turns generation_{run_name} into generation_i
|
161 |
+
Also truncates full_prompt column to 200 chars with expandable view
|
162 |
"""
|
163 |
# Handle metric columns
|
|
|
164 |
columns_to_rename = {}
|
165 |
for idx, run_name in enumerate(run_names):
|
166 |
for metric_name in metric_names:
|
|
|
174 |
|
175 |
# Rename columns in a single operation
|
176 |
df = df.rename(columns=columns_to_rename)
|
177 |
+
|
178 |
+
# Add markdown formatting to full_prompt column for truncation with expansion
|
179 |
+
if 'prompt' in df.columns:
|
180 |
+
df['prompt'] = df['prompt'].apply(
|
181 |
+
lambda x: f"<details><summary>{x[:100]}...</summary>\n\n{x}</details>" if len(x) > 100 else x
|
182 |
+
)
|
183 |
+
|
184 |
return df
|
185 |
|
186 |
|
187 |
+
def load_task_data(results_uri, runs_to_fetch, checkpoint, task_name, tasks_files, prompt_column, progress=gr.Progress()):
|
188 |
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
189 |
if not runs_to_fetch or not task_name:
|
190 |
+
return None, None
|
191 |
|
192 |
|
193 |
|
|
|
214 |
return None, None, gr.update(choices=[], value=None)
|
215 |
|
216 |
task_type = get_task_type(dfs[0])
|
217 |
+
def prepare_df(df, run_name, task_type, prompt_column):
|
218 |
def get_choice_predictions(df, task_type):
|
|
|
219 |
predictions = df['predictions']
|
220 |
if task_type == "generative":
|
221 |
return predictions
|
|
|
232 |
generative_columns = {
|
233 |
f"generation_{run_name}": df.apply(partial(get_choice_predictions, task_type=task_type), axis=1)
|
234 |
} if task_type == "generative" or task_type == "mixed" else {}
|
|
|
|
|
|
|
235 |
|
236 |
prepared_df = pd.DataFrame({
|
237 |
+
'prompt': df[prompt_column],
|
238 |
+
'choices': df['choices'].apply(tuple), # Convert lists to tuples
|
239 |
+
'gold': df['gold'].apply(lambda x: tuple(x) if isinstance(x, list) else x), # Convert lists to tuples
|
240 |
+
'gold_index': df['gold_index'],
|
241 |
**generative_columns,
|
242 |
})
|
243 |
+
|
244 |
# For some reason some metrics are stored as strings
|
245 |
metrics = df['metrics']
|
|
|
246 |
available_metrics = set(metric for row_metrics in metrics for metric in row_metrics)
|
247 |
for metric_key in available_metrics:
|
248 |
prepared_df[f'metric_{metric_key}_{run_name}'] = [metric.get(metric_key, None) for metric in metrics]
|
249 |
|
250 |
# Merge rows with the same full_prompt
|
251 |
+
prepared_df = prepared_df.groupby('prompt').agg(lambda x: next((item for item in x if item is not None), None)).reset_index()
|
252 |
+
prepared_df["prompt"] = prepared_df["prompt"].astype(str)
|
253 |
+
return prepared_df
|
254 |
|
255 |
def get_gold_label(df, task_type):
|
256 |
if task_type == "generative":
|
|
|
258 |
return df['gold_index']
|
259 |
|
260 |
# Prepare the first DataFrame with choices and gold
|
261 |
+
# Join all prepared DataFrames
|
262 |
+
prepared_dfs = [
|
263 |
+
prepare_df(df, run_name, task_type, prompt_column)
|
264 |
+
for df, run_name in zip(dfs, run_names)
|
265 |
+
]
|
266 |
+
|
267 |
+
combined_df = prepared_dfs[0]
|
268 |
+
for idx, prepared_df in enumerate(prepared_dfs[1:]):
|
269 |
+
combined_df = combined_df.merge(prepared_df, how='outer', on=("prompt", "gold"), suffixes=(None, f"_{idx}"))
|
270 |
+
to_keep = ["prompt", "gold"]
|
271 |
+
|
272 |
if task_type in ["multiple_choice", "mixed"]:
|
273 |
+
to_keep.append("choices")
|
274 |
+
elif task_type == "generative":
|
275 |
+
to_keep.extend([col for col in combined_df.columns if col.startswith("generation_")])
|
276 |
|
277 |
+
combined_df['gold'] = combined_df.apply(lambda row: get_gold_label(row, task_type), axis=1).values
|
278 |
+
metric_cols = [col for col in combined_df.columns if col.startswith("metric_")]
|
279 |
+
combined_df = combined_df[to_keep + metric_cols]
|
|
|
|
|
|
|
|
|
280 |
|
281 |
+
available_metrics = list(set("_".join(col.split('_')[1:-1]) for col in metric_cols))
|
|
|
282 |
chosen_metrics = available_metrics[:1]
|
283 |
|
284 |
return combined_df, gr.update(choices=available_metrics, value=chosen_metrics)
|
|
|
291 |
results_uri = gr.Textbox(label="Results URI", value="s3://fineweb-multilingual-v1/evals/test/", visible=True)
|
292 |
with gr.Column():
|
293 |
gr.Markdown("# FineWeb experiments results explorer")
|
294 |
+
split_checkpoints = gr.Checkbox(label="Split checkpoints from models", value=True)
|
295 |
with gr.Row():
|
296 |
with gr.Column():
|
297 |
select_by_regex_text = gr.Textbox(label="Regex to select runs",
|
298 |
+
value="ind_minhash(-CC-MAIN-|_)\\d{4}-\\d{2}-seed.*")
|
299 |
select_by_regex_button = gr.Button("Select matching runs")
|
300 |
with gr.Column():
|
301 |
select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"],
|
302 |
+
interactive=True, label="Select by language",
|
303 |
+
info="Choose a language to prefill the regex")
|
304 |
selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs")
|
305 |
+
checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint", visible=True)
|
306 |
fetch_res = gr.Button("Fetch results")
|
307 |
task_name = gr.Dropdown(choices=[], interactive=True, label="Task name")
|
308 |
metric_names = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Metric")
|
309 |
+
results_df = gr.Dataframe(
|
310 |
+
interactive=False,
|
311 |
+
wrap=True,
|
312 |
+
line_breaks=True,
|
313 |
+
datatype="markdown"
|
314 |
+
)
|
315 |
with gr.Row():
|
316 |
with gr.Column():
|
317 |
num_samples = gr.Text(interactive=False, label="# Samples")
|
318 |
+
prompt_column = gr.Radio(choices=["full_prompt", "example"], label="Prompt display", value="example")
|
319 |
|
320 |
# Run selection
|
321 |
gr.on(
|
|
|
349 |
outputs=[task_name, tasks_files]
|
350 |
).then(
|
351 |
fn=load_task_data,
|
352 |
+
inputs=[results_uri, selected_runs, checkpoint, task_name, tasks_files, prompt_column],
|
353 |
outputs=[results_df_full, metric_names]
|
354 |
).then(
|
355 |
fn=render_table,
|
|
|
361 |
gr.on(
|
362 |
triggers=[task_name.input],
|
363 |
fn=load_task_data,
|
364 |
+
inputs=[results_uri, selected_runs, checkpoint, task_name, tasks_files, prompt_column],
|
365 |
outputs=[results_df_full, metric_names]
|
366 |
).then(
|
367 |
fn=render_table,
|