Spaces:
Running
Running
first commit
Browse files- app.py +331 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
from collections import defaultdict
|
3 |
+
from functools import partial
|
4 |
+
import itertools
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
+
import numpy as np
|
9 |
+
from datetime import datetime
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import huggingface_hub
|
13 |
+
import pandas as pd
|
14 |
+
import plotly.graph_objects as go
|
15 |
+
from huggingface_hub.file_download import repo_folder_name
|
16 |
+
from huggingface_hub.hf_api import RepoFile
|
17 |
+
from huggingface_hub.utils import EntryNotFoundError
|
18 |
+
|
19 |
+
FALLBACK_TOKEN_NAME = "HF_TOKEN"
|
20 |
+
|
21 |
+
def is_arary_like(x):
|
22 |
+
return isinstance(x, list) or isinstance(x, tuple) or isinstance(x, np.ndarray)
|
23 |
+
|
24 |
+
def get_task_type(df):
|
25 |
+
if all(isinstance(pred, str) for pred in df['predictions'].iloc[0]):
|
26 |
+
return "generative"
|
27 |
+
if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]):
|
28 |
+
return "multiple_choice"
|
29 |
+
return "mixed"
|
30 |
+
|
31 |
+
def fix_df(df):
|
32 |
+
# For some reason some metrics and predictions are stored as strings
|
33 |
+
for col in ["predictions", "metrics", "choices", "gold", "gold_index"]:
|
34 |
+
df[col] = [ast.literal_eval(x) if isinstance(x, str) else x for x in df[col].values]
|
35 |
+
return df
|
36 |
+
|
37 |
+
def get_run_name_seed(run_name):
|
38 |
+
if "-seed-" not in run_name:
|
39 |
+
return run_name, 5
|
40 |
+
run_name, seed = run_name.split("-seed-")
|
41 |
+
return run_name, int(seed)
|
42 |
+
|
43 |
+
def fetch_repo_structure(repo_name, oauth_token: gr.OAuthToken | None = None):
|
44 |
+
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
45 |
+
if oauth_token:
|
46 |
+
token = oauth_token.token
|
47 |
+
|
48 |
+
files = list(huggingface_hub.list_repo_tree(repo_name, "details", recursive=False, token=token))
|
49 |
+
|
50 |
+
runs = {file.path.split('/')[-1] for file in files if isinstance(file, huggingface_hub.hf_api.RepoFolder)}
|
51 |
+
if not runs:
|
52 |
+
return {}, gr.update(choices=[], value=None)
|
53 |
+
|
54 |
+
def process_run(run):
|
55 |
+
run_files = list(huggingface_hub.list_repo_tree(repo_name, f"details/{run}", recursive=False, token=token))
|
56 |
+
return run, [file.path.split('/')[-1] for file in run_files if isinstance(file, huggingface_hub.hf_api.RepoFolder)]
|
57 |
+
|
58 |
+
with ThreadPoolExecutor() as executor:
|
59 |
+
results = list(executor.map(process_run, runs))
|
60 |
+
|
61 |
+
checkpoints_dict = dict(results)
|
62 |
+
|
63 |
+
return checkpoints_dict, gr.update(choices=list(checkpoints_dict), value=None)
|
64 |
+
|
65 |
+
def update_checkpoints(selected_runs, checkpoints):
|
66 |
+
if not selected_runs:
|
67 |
+
return gr.update(choices=[], value=None)
|
68 |
+
|
69 |
+
common_checkpoints = set(checkpoints[selected_runs[0]])
|
70 |
+
for run in selected_runs[1:]:
|
71 |
+
common_checkpoints.intersection_update(set(checkpoints[run]))
|
72 |
+
|
73 |
+
common_checkpoints = sorted(list(common_checkpoints))
|
74 |
+
|
75 |
+
return gr.update(choices=common_checkpoints, value=common_checkpoints[0] if common_checkpoints else None)
|
76 |
+
|
77 |
+
|
78 |
+
def select_runs_by_regex(runs, current_selected, regex_to_select):
|
79 |
+
comp_re = re.compile(regex_to_select)
|
80 |
+
return list(sorted(set((current_selected if current_selected else []) +
|
81 |
+
[run for run in runs if comp_re.fullmatch(run)])))
|
82 |
+
|
83 |
+
def select_runs_by_language(runs, current_selected, language):
|
84 |
+
if language:
|
85 |
+
return select_runs_by_regex(runs, current_selected, f".*-{language}-.*")
|
86 |
+
return current_selected
|
87 |
+
|
88 |
+
def fetch_available_tasks(repo_name, runs_to_fetch, checkpoint) -> dict[str, dict[str, str]]:
|
89 |
+
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
90 |
+
|
91 |
+
all_tasks = defaultdict(lambda: defaultdict(dict))
|
92 |
+
for run in runs_to_fetch:
|
93 |
+
try:
|
94 |
+
files = huggingface_hub.list_repo_tree(repo_name, f"details/{run}/{checkpoint}", token=token)
|
95 |
+
parquet_files = [f.path.split('/')[-1] for f in files if f.path.endswith('.parquet')]
|
96 |
+
|
97 |
+
for full_filename in parquet_files:
|
98 |
+
task_name, date_str = full_filename.replace('.parquet', '').rsplit('_', 1)
|
99 |
+
date = datetime.strptime(date_str, '%Y-%m-%dT%H-%M-%S.%f')
|
100 |
+
|
101 |
+
if run not in all_tasks[task_name] or date > all_tasks[task_name][run]['date']:
|
102 |
+
all_tasks[task_name][run] = {'filename': full_filename, 'date': date}
|
103 |
+
except EntryNotFoundError:
|
104 |
+
print(f"Checkpoint not found for run: {run}")
|
105 |
+
|
106 |
+
available_tasks = {
|
107 |
+
task: {run: info['filename'] for run, info in runs.items()}
|
108 |
+
for task, runs in all_tasks.items()
|
109 |
+
if set(runs.keys()) == set(runs_to_fetch)
|
110 |
+
}
|
111 |
+
|
112 |
+
return available_tasks
|
113 |
+
|
114 |
+
def fetch_run_results(repo_name, runs_to_fetch, checkpoint,
|
115 |
+
oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()):
|
116 |
+
|
117 |
+
task_runs_dict = fetch_available_tasks(repo_name, runs_to_fetch, checkpoint)
|
118 |
+
task_names = list(task_runs_dict.keys())
|
119 |
+
return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict
|
120 |
+
|
121 |
+
|
122 |
+
def filter_with_metric(df, selected_runs, metric_name):
|
123 |
+
if df is None or not selected_runs or not metric_name:
|
124 |
+
return None
|
125 |
+
kept_metrics = [f"metric_{metric_name}_{run_name}" for run_name in selected_runs]
|
126 |
+
other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
|
127 |
+
df = df.drop(columns=other_metrics)
|
128 |
+
widths = get_column_widths(df)
|
129 |
+
df = consize_runname_metric(df, selected_runs, metric_name)
|
130 |
+
return gr.update(value=df, column_widths=widths)
|
131 |
+
|
132 |
+
def get_column_widths(df):
|
133 |
+
column_widths = []
|
134 |
+
for col in df.columns:
|
135 |
+
if col == "full_prompt":
|
136 |
+
column_widths.append("300px")
|
137 |
+
elif col in ["choices", "gold"]:
|
138 |
+
column_widths.append("250px")
|
139 |
+
elif col.startswith("metric_"):
|
140 |
+
column_widths.append("100px")
|
141 |
+
else:
|
142 |
+
column_widths.append("200px") # Default width for other columns
|
143 |
+
return column_widths
|
144 |
+
|
145 |
+
|
146 |
+
def consize_runname_metric(df, run_names, metric_name):
|
147 |
+
"""
|
148 |
+
Turns metric columns (metric_{metric}_{run_name}) into {metric}_i
|
149 |
+
"""
|
150 |
+
# Initialize the new column with empty strings
|
151 |
+
for idx, run_name in enumerate(run_names):
|
152 |
+
original_column = f"metric_{metric_name}_{run_name}"
|
153 |
+
if original_column in df.columns:
|
154 |
+
# Append the run name and metric value to the concise column
|
155 |
+
df[f"{metric_name}_{idx}"] = df[original_column]
|
156 |
+
df = df.drop(columns=[original_column])
|
157 |
+
return df
|
158 |
+
|
159 |
+
|
160 |
+
def load_task_data(repo_name, runs_to_fetch, checkpoint, task_name, tasks_files, progress=gr.Progress()):
|
161 |
+
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
162 |
+
if not runs_to_fetch or not task_name:
|
163 |
+
return None, None, None
|
164 |
+
|
165 |
+
def fetch_run_file(run_to_fetch):
|
166 |
+
file_path = f"details/{run_to_fetch}/{checkpoint}/{tasks_files[task_name][run_to_fetch]}"
|
167 |
+
try:
|
168 |
+
cached_path = huggingface_hub.hf_hub_download(repo_name, file_path, token=token)
|
169 |
+
df = pd.read_parquet(cached_path)
|
170 |
+
return df, run_to_fetch
|
171 |
+
except EntryNotFoundError:
|
172 |
+
print(f"File not found: {file_path}")
|
173 |
+
return None, run_to_fetch
|
174 |
+
|
175 |
+
with ThreadPoolExecutor() as pool:
|
176 |
+
results = list(progress.tqdm(pool.map(fetch_run_file, runs_to_fetch), total=len(runs_to_fetch),
|
177 |
+
desc="Fetching run data..."))
|
178 |
+
|
179 |
+
dfs = [fix_df(df) for df, _ in results if df is not None]
|
180 |
+
run_names = [run for _, run in results if run is not None]
|
181 |
+
|
182 |
+
if not dfs:
|
183 |
+
return None, None, gr.update(choices=[], value=None)
|
184 |
+
|
185 |
+
task_type = get_task_type(dfs[0])
|
186 |
+
def prepare_df(df, run_name, task_type):
|
187 |
+
def get_choice_predictions(df, task_type):
|
188 |
+
# For some evals it's string for other it's list
|
189 |
+
predictions = df['predictions']
|
190 |
+
if task_type == "generative":
|
191 |
+
return predictions
|
192 |
+
|
193 |
+
if task_type == "multiple_choice":
|
194 |
+
n_choices = len(df['choices'])
|
195 |
+
return df['choices'][np.argmax([pred[0] for pred in predictions[:n_choices]])]
|
196 |
+
|
197 |
+
if task_type == "mixed":
|
198 |
+
return predictions[0]
|
199 |
+
|
200 |
+
return predictions
|
201 |
+
|
202 |
+
prepared_df = pd.DataFrame({
|
203 |
+
'full_prompt': df['full_prompt'],
|
204 |
+
f'{run_name}': df.apply(partial(get_choice_predictions, task_type=task_type), axis=1)
|
205 |
+
})
|
206 |
+
# For some reason some metrics are stored as strings
|
207 |
+
metrics = df['metrics']
|
208 |
+
# Assume all metrics are the same
|
209 |
+
for metric_key in metrics[0].keys():
|
210 |
+
prepared_df[f'metric_{metric_key}_{run_name}'] = [metric[metric_key] for metric in metrics]
|
211 |
+
return prepared_df.set_index('full_prompt')
|
212 |
+
|
213 |
+
def get_gold_label(df, task_type):
|
214 |
+
if task_type == "generative":
|
215 |
+
return df['gold']
|
216 |
+
return [df['choices'][idx] for idx in df['gold_index']]
|
217 |
+
|
218 |
+
# Prepare the first DataFrame with choices and gold
|
219 |
+
combined_df = dfs[0][['full_prompt', 'choices']].set_index('full_prompt')
|
220 |
+
combined_df['gold'] = dfs[0].apply(lambda row: get_gold_label(row, task_type), axis=1).values
|
221 |
+
|
222 |
+
# Join all prepared DataFrames
|
223 |
+
for df, run_name in zip(dfs, run_names):
|
224 |
+
prepared_df = prepare_df(df, run_name, task_type)
|
225 |
+
combined_df = combined_df.join(prepared_df, how='outer', )
|
226 |
+
|
227 |
+
|
228 |
+
available_metrics = list(set("_".join(col.split('_')[1:-1]) for col in combined_df.columns if col.startswith("metric_")))
|
229 |
+
combined_df = combined_df.reset_index()
|
230 |
+
|
231 |
+
return combined_df, filter_with_metric(combined_df, runs_to_fetch, available_metrics[0]), gr.update(choices=available_metrics, value=available_metrics[0])
|
232 |
+
|
233 |
+
def render_results_table(df: pd.DataFrame):
|
234 |
+
if df is None or df.empty:
|
235 |
+
return None
|
236 |
+
|
237 |
+
# Select a subset of 100 examples
|
238 |
+
df_subset = df.sample(n=min(100, len(df)), random_state=42)
|
239 |
+
|
240 |
+
# Prepare the data for display
|
241 |
+
display_data = []
|
242 |
+
for _, row in df_subset.iterrows():
|
243 |
+
example_data = {
|
244 |
+
'text': row['example'],
|
245 |
+
'choices': row['choices'],
|
246 |
+
'gold_index': row['gold_index'],
|
247 |
+
}
|
248 |
+
for run in df['run'].unique():
|
249 |
+
run_data = df[(df['run'] == run) & (df['example'] == row['example'])]
|
250 |
+
if not run_data.empty:
|
251 |
+
example_data[f'{run}_prediction'] = run_data['predictions'].values[0]
|
252 |
+
example_data[f'{run}_score'] = run_data['metrics'].values[0]
|
253 |
+
display_data.append(example_data)
|
254 |
+
|
255 |
+
return pd.DataFrame(display_data)
|
256 |
+
|
257 |
+
with gr.Blocks() as demo:
|
258 |
+
runs_checkpoints = gr.State({})
|
259 |
+
results_df_full = gr.State(None)
|
260 |
+
tasks_files = gr.State({})
|
261 |
+
login_button = gr.LoginButton(visible=False)
|
262 |
+
repo = gr.Textbox(label="HF Repo", value="HuggingFaceFW-Dev/multiligual-ablation-logs-dev", visible=True)
|
263 |
+
with gr.Column():
|
264 |
+
gr.Markdown("# FineWeb experiments results explorer")
|
265 |
+
with gr.Row():
|
266 |
+
with gr.Column():
|
267 |
+
select_by_regex_text = gr.Textbox(label="Regex to select runs",
|
268 |
+
value="ind_minhash(-CC-MAIN-|_)\\d{4}-\\d{2}-seed.*")
|
269 |
+
select_by_regex_button = gr.Button("Select matching runs")
|
270 |
+
with gr.Column():
|
271 |
+
select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"],
|
272 |
+
interactive=True, label="Select by language",
|
273 |
+
info="Choose a language to prefill the regex")
|
274 |
+
selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs")
|
275 |
+
checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint")
|
276 |
+
fetch_res = gr.Button("Fetch results")
|
277 |
+
task_name = gr.Dropdown(choices=[], interactive=True, label="Task name")
|
278 |
+
metric_name = gr.Dropdown(choices=[], interactive=True, label="Metric")
|
279 |
+
results_df = gr.Dataframe(interactive=False, wrap=True)
|
280 |
+
|
281 |
+
# Run selection
|
282 |
+
gr.on(
|
283 |
+
triggers=[repo.change],
|
284 |
+
fn=fetch_repo_structure, inputs=[repo], outputs=[runs_checkpoints, selected_runs],
|
285 |
+
)
|
286 |
+
gr.on(
|
287 |
+
triggers=[select_by_regex_button.click],
|
288 |
+
fn=select_runs_by_regex,
|
289 |
+
inputs=[runs_checkpoints, selected_runs, select_by_regex_text], outputs=[selected_runs]
|
290 |
+
)
|
291 |
+
gr.on(
|
292 |
+
triggers=[select_by_language.change],
|
293 |
+
fn=select_runs_by_language,
|
294 |
+
inputs=[runs_checkpoints, selected_runs, select_by_language], outputs=[selected_runs]
|
295 |
+
)
|
296 |
+
|
297 |
+
# Update checkpoints based on selected runs
|
298 |
+
gr.on(
|
299 |
+
triggers=[selected_runs.change],
|
300 |
+
fn=update_checkpoints,
|
301 |
+
inputs=[selected_runs, runs_checkpoints],
|
302 |
+
outputs=[checkpoint]
|
303 |
+
)
|
304 |
+
|
305 |
+
# Fetch available tasks
|
306 |
+
gr.on(
|
307 |
+
triggers=[fetch_res.click],
|
308 |
+
fn=fetch_run_results,
|
309 |
+
inputs=[repo, selected_runs, checkpoint],
|
310 |
+
outputs=[task_name, tasks_files]
|
311 |
+
)
|
312 |
+
|
313 |
+
|
314 |
+
# Update results when task name or metric changes
|
315 |
+
gr.on(
|
316 |
+
triggers=[task_name.change],
|
317 |
+
fn=load_task_data,
|
318 |
+
inputs=[repo, selected_runs, checkpoint, task_name, tasks_files],
|
319 |
+
outputs=[results_df_full, results_df, metric_name]
|
320 |
+
)
|
321 |
+
|
322 |
+
gr.on(
|
323 |
+
triggers=[metric_name.change],
|
324 |
+
fn=filter_with_metric,
|
325 |
+
inputs=[results_df_full, selected_runs, metric_name],
|
326 |
+
outputs=[results_df]
|
327 |
+
)
|
328 |
+
|
329 |
+
demo.load(fn=fetch_repo_structure, inputs=[repo], outputs=[runs_checkpoints, selected_runs])
|
330 |
+
|
331 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
plotly
|