File size: 1,364 Bytes
8b150bd
7bacfb4
 
 
8174f96
8b150bd
9a164e3
 
8b150bd
7bacfb4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14


<img align="right" src="https://raw.githubusercontent.com/GT4SD/gt4sd-core/main/docs/_static/gt4sd_logo.png" alt="logo" width="120" >

### Concurrent sequence regression and generation for molecular language modeling

The [Regression Transformer](https://www.nature.com/articles/s42256-023-00639-z) is a multitask Transformer that reformulates regression as a conditional sequence modeling task.
This yields a dichotomous language model that seamlessly integrates property prediction with property-driven conditional generation. For details see the [*Nature Machine Intelligence* paper](https://www.nature.com/articles/s42256-023-00639-z), the [development code](https://github.com/IBM/regression-transformer) and the [GT4SD endpoint](https://github.com/GT4SD/gt4sd-core) for inference.

Each `algorithm_version` refers to one trained model. Each model can be used for **two tasks**, either to *predict* one (or multiple) properties of a molecule or to *generate* a molecule (given a seed molecule and a property constraint).

For **examples** and **documentation** of the model parameters, please see below.
Moreover, we provide a **model card** ([Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)) at the bottom of this page.