jannisborn commited on
Commit
9a164e3
·
unverified ·
1 Parent(s): c0c0555
model_cards/regression_transformer_article.md CHANGED
@@ -103,12 +103,19 @@ Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi
103
  ## Citation
104
 
105
  ```bib
106
- @article{born2022regression,
107
- title={Regression Transformer: Concurrent Conditional Generation and Regression by Blending Numerical and Textual Tokens},
108
  author={Born, Jannis and Manica, Matteo},
109
- journal={arXiv preprint arXiv:2202.01338},
110
- note={Spotlight talk at ICLR workshop on Machine Learning for Drug Discovery},
111
- year={2022}
 
 
 
 
 
 
 
112
  }
113
  ```
114
 
 
103
  ## Citation
104
 
105
  ```bib
106
+ @article{born2023regression,
107
+ title={Regression Transformer enables concurrent sequence regression and generation for molecular language modelling},
108
  author={Born, Jannis and Manica, Matteo},
109
+ journal={Nature Machine Intelligence},
110
+ year={2023},
111
+ month={04},
112
+ day={06},
113
+ volume={},
114
+ number={},
115
+ pages={},
116
+ note={},
117
+ doi={10.1038/s42256-023-00639-z},
118
+ url={https://doi.org/10.1038/s42256-023-00639-z},
119
  }
120
  ```
121
 
model_cards/regression_transformer_description.md CHANGED
@@ -4,8 +4,8 @@
4
 
5
  ### Concurrent sequence regression and generation for molecular language modeling
6
 
7
- The [Regression Transformer](https://arxiv.org/abs/2202.01338) is a multitask Transformer that reformulates regression as a conditional sequence modeling task.
8
- This yields a dichotomous language model that seamlessly integrates property prediction with property-driven conditional generation. For details see the [arXiv preprint](https://arxiv.org/abs/2202.01338), the [development code](https://github.com/IBM/regression-transformer) and the [GT4SD endpoint](https://github.com/GT4SD/gt4sd-core) for inference.
9
 
10
  Each `algorithm_version` refers to one trained model. Each model can be used for **two tasks**, either to *predict* one (or multiple) properties of a molecule or to *generate* a molecule (given a seed molecule and a property constraint).
11
 
 
4
 
5
  ### Concurrent sequence regression and generation for molecular language modeling
6
 
7
+ The [Regression Transformer](https://www.nature.com/articles/s42256-023-00639-z) is a multitask Transformer that reformulates regression as a conditional sequence modeling task.
8
+ This yields a dichotomous language model that seamlessly integrates property prediction with property-driven conditional generation. For details see the [*Nature Machine Intelligence* paper](https://www.nature.com/articles/s42256-023-00639-z), the [development code](https://github.com/IBM/regression-transformer) and the [GT4SD endpoint](https://github.com/GT4SD/gt4sd-core) for inference.
9
 
10
  Each `algorithm_version` refers to one trained model. Each model can be used for **two tasks**, either to *predict* one (or multiple) properties of a molecule or to *generate* a molecule (given a seed molecule and a property constraint).
11