jannisborn commited on
Commit
7bacfb4
·
unverified ·
1 Parent(s): 8174f96
app.py CHANGED
@@ -83,7 +83,17 @@ def regression_transformer(
83
  )
84
  model = RegressionTransformer(configuration=config, target=target)
85
  samples = list(model.sample(number_of_samples))
86
-
 
 
 
 
 
 
 
 
 
 
87
  if task == "Predict":
88
  return draw_grid_predict(samples[0], target, domain=algorithm.split(":")[0])
89
  else:
 
83
  )
84
  model = RegressionTransformer(configuration=config, target=target)
85
  samples = list(model.sample(number_of_samples))
86
+ if algorithm_version == "polymer" and task == "Generate":
87
+ correct_samples = [(s, p) for s, p in samples if "." in s]
88
+ while len(correct_samples) < number_of_samples:
89
+ samples = list(model.sample(number_of_samples))
90
+ correct_samples.extend(
91
+ [
92
+ (s, p)
93
+ for s, p in samples
94
+ if "." in s and (s, p) not in correct_samples
95
+ ]
96
+ )
97
  if task == "Predict":
98
  return draw_grid_predict(samples[0], target, domain=algorithm.split(":")[0])
99
  else:
model_cards/regression_transformer_article.md CHANGED
@@ -1,8 +1,8 @@
1
- # Model card -- Regression Transformer
2
 
3
  ## Parameters
4
 
5
- ### Algorithm Version:
6
  Which model checkpoint to use (trained on different datasets).
7
 
8
  ### Task
@@ -45,6 +45,60 @@ Optionally specifies a list of substructures that should definitely be present i
45
  *NOTE*: This keeps tokens even if they are included in `tokens_to_mask`.
46
  *NOTE*: Most models operate on SELFIES and the matching of the substructures occurs in SELFIES simply on a string level.
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  ## Citation
49
 
50
  ```bib
 
1
+ # Model documentation & parameters
2
 
3
  ## Parameters
4
 
5
+ ### Algorithm Version
6
  Which model checkpoint to use (trained on different datasets).
7
 
8
  ### Task
 
45
  *NOTE*: This keeps tokens even if they are included in `tokens_to_mask`.
46
  *NOTE*: Most models operate on SELFIES and the matching of the substructures occurs in SELFIES simply on a string level.
47
 
48
+
49
+
50
+ # Model card -- Regression Transformer
51
+
52
+ **Model Details**: The [Regression Transformer](https://arxiv.org/abs/2202.01338) is a multitask Transformer that reformulates regression as a conditional sequence modeling task. This yields a dichotomous language model that seamlessly integrates property prediction with property-driven conditional generation.
53
+
54
+ **Developers**: Jannis Born and Matteo Manica from IBM Research.
55
+
56
+ **Distributors**: Original authors' code wrapped and distributed by GT4SD Team (2023) from IBM Research.
57
+
58
+ **Model date**: Preprint released in 2022, currently under review at *Nature Machine Intelligence*.
59
+
60
+ **Model version**: Models trained and distributed by the original authors.
61
+ - **Molecules: QED**: Model trained on 1.6M molecules (SELFIES) from ChEMBL and their QED scores.
62
+ - **Molecules: Solubility**: QED model finetuned on the ESOL dataset from [Delaney et al (2004), *J. Chem. Inf. Comput. Sci.*](https://pubs.acs.org/doi/10.1021/ci034243x) to predict water solubility. Model trained on augmented SELFIES.
63
+ - **Molecules: USPTO**: Model trained on 2.8M [chemical reactions](https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873) from the US patent office. The model used SELFIES and a synthetic property (total molecular weight of all precursors).
64
+ - **Molecules: Polymer**: Model finetuned on 600 ROPs (ring-opening polymerizations) with monomer-catalyst pairs. Model used three properties: conversion (`<conv>`), PDI (`<pdi>`) and Molecular Weight (`<molwt>`). Model trained with augmented SELFIES, optimized only to generate catalysts, given a monomer and the property constraints. See the example for details.
65
+ - **Molecules: Cosmo_acdl**: Model finetuned on 56k molecules with two properties (*pKa_ACDL* and *pKa_COSMO*). Model used augmented SELFIES.
66
+ - **Molecules: Pfas**: Model finetuned on ~1k PFAS (Perfluoroalkyl and Polyfluoroalkyl Substances) molecules with 9 properties including some experimentally measured ones (biodegradability, LD50 etc) and some synthetic ones (SCScore, molecular weight). Model trained on augmented SELFIES.
67
+ - **Molecules: Logp_and_synthesizability**: Model trained on 2.9M molecules (SELFIES) from PubChem with **two** synthetic properties, the logP (partition coefficient) and the [SCScore by Coley et al. (2018); *J. Chem. Inf. Model.*](https://pubs.acs.org/doi/full/10.1021/acs.jcim.7b00622?casa_token=JZzOrdWlQ_QAAAAA%3A3_ynCfBJRJN7wmP2gyAR0EWXY-pNW_l-SGwSSU2SGfl5v5SxcvqhoaPNDhxq4THberPoyyYqTZELD4Ck)
68
+ - **Molecules: Crippen_logp**: Model trained on 2.9M molecules (SMILES) from PubChem, but *only* on logP (partition coefficient).
69
+ - **Proteins: Stability**: Model pretrained on 2.6M peptides from UniProt with the Boman index as property. Finetuned on the [**Stability**](https://www.science.org/doi/full/10.1126/science.aan0693) dataset from the [TAPE benchmark](https://proceedings.neurips.cc/paper/2019/hash/37f65c068b7723cd7809ee2d31d7861c-Abstract.html) which has ~65k samples.
70
+
71
+ **Model type**: A Transformer-based language model that is trained on alphanumeric sequence to simultaneously perform sequence regression or conditional sequence generation.
72
+
73
+ **Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**:
74
+ All models are trained with an alternated training scheme that alternated between optimizing the cross-entropy loss on the property tokens ("regression") or the self-consistency objective on the molecular tokens. See the [Regression Transformer](https://arxiv.org/abs/2202.01338) paper for details.
75
+
76
+ **Paper or other resource for more information**:
77
+ The [Regression Transformer](https://arxiv.org/abs/2202.01338) paper. See the [source code](https://github.com/IBM/regression-transformer) for details.
78
+
79
+ **License**: MIT
80
+
81
+ **Where to send questions or comments about the model**: Open an issue on [GT4SD repository](https://github.com/GT4SD/gt4sd-core).
82
+
83
+ **Intended Use. Use cases that were envisioned during development**: Chemical research, in particular drug discovery.
84
+
85
+ **Primary intended uses/users**: Researchers and computational chemists using the model for model comparison or research exploration purposes.
86
+
87
+ **Out-of-scope use cases**: Production-level inference, producing molecules with harmful properties.
88
+
89
+ **Factors**: Not applicable.
90
+
91
+ **Metrics**: High predictive power for the properties of the `model_version`.
92
+
93
+ **Datasets**: Different ones, as described under **Model version**.
94
+
95
+ **Ethical Considerations**: No specific considerations as no private/personal data is involved. Please consult with the authors in case of questions.
96
+
97
+ **Caveats and Recommendations**: Please consult with original authors in case of questions.
98
+
99
+ Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
100
+
101
+
102
  ## Citation
103
 
104
  ```bib
model_cards/regression_transformer_description.md CHANGED
@@ -1,7 +1,13 @@
1
 
 
 
 
2
  ### Concurrent sequence regression and generation for molecular language modeling
3
 
4
- The RT is a multitask Transformer that reformulates regression as a conditional sequence modeling task.
5
  This yields a dichotomous language model that seamlessly integrates property prediction with property-driven conditional generation. For details see the [arXiv preprint](https://arxiv.org/abs/2202.01338), the [development code](https://github.com/IBM/regression-transformer) and the [GT4SD endpoint](https://github.com/GT4SD/gt4sd-core) for inference.
6
 
7
- Each `algorithm_version` refers to one trained model. Each model can be used for **two tasks**, either to *predict* one (or multiple) properties of a molecule or to *generate* a molecule (given a seed molecule and a property constraint).
 
 
 
 
1
 
2
+
3
+ <img align="right" src="https://raw.githubusercontent.com/GT4SD/gt4sd-core/main/docs/_static/gt4sd_logo.png" alt="logo" width="120" >
4
+
5
  ### Concurrent sequence regression and generation for molecular language modeling
6
 
7
+ The [Regression Transformer](https://arxiv.org/abs/2202.01338) is a multitask Transformer that reformulates regression as a conditional sequence modeling task.
8
  This yields a dichotomous language model that seamlessly integrates property prediction with property-driven conditional generation. For details see the [arXiv preprint](https://arxiv.org/abs/2202.01338), the [development code](https://github.com/IBM/regression-transformer) and the [GT4SD endpoint](https://github.com/GT4SD/gt4sd-core) for inference.
9
 
10
+ Each `algorithm_version` refers to one trained model. Each model can be used for **two tasks**, either to *predict* one (or multiple) properties of a molecule or to *generate* a molecule (given a seed molecule and a property constraint).
11
+
12
+ For **examples** and **documentation** of the model parameters, please see below.
13
+ Moreover, we provide a **model card** ([Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)) at the bottom of this page.
model_cards/regression_transformer_examples.csv CHANGED
@@ -5,3 +5,5 @@ Proteins: Stability,Predict,<stab>[MASK][MASK][MASK][MASK][MASK]|GSQEVNSGTQTYKNA
5
  Proteins: Stability,Generate,GSQEVNSGTQTYKNASPEEAERIARKAGATTWTEKGNKWEIRI,10,Sample,1.2,30,True,0.3,<stab>:0.393,,SQEVNSGTQTYKN,WTEK
6
  Molecules: Qed,Generate,<qed>0.717|[MASK][MASK][MASK][MASK][MASK][C][Branch2_1][Ring1][Ring1][MASK][MASK][=C][C][Branch1_1][C][C][=N][C][MASK][MASK][=C][C][=C][Ring1][O][Ring1][Branch1_2][=C][Ring2][MASK][MASK],10,Sample,1.2,30,False,0.0,,,,
7
  Molecules: Solubility,Generate,ClC(Cl)C(Cl)Cl,5,Sample,1.3,40,True,0.4,<esol>:0.754,,,
 
 
 
5
  Proteins: Stability,Generate,GSQEVNSGTQTYKNASPEEAERIARKAGATTWTEKGNKWEIRI,10,Sample,1.2,30,True,0.3,<stab>:0.393,,SQEVNSGTQTYKN,WTEK
6
  Molecules: Qed,Generate,<qed>0.717|[MASK][MASK][MASK][MASK][MASK][C][Branch2_1][Ring1][Ring1][MASK][MASK][=C][C][Branch1_1][C][C][=N][C][MASK][MASK][=C][C][=C][Ring1][O][Ring1][Branch1_2][=C][Ring2][MASK][MASK],10,Sample,1.2,30,False,0.0,,,,
7
  Molecules: Solubility,Generate,ClC(Cl)C(Cl)Cl,5,Sample,1.3,40,True,0.4,<esol>:0.754,,,
8
+ Molecules: Polymer,Predict,<conv>[MASK][MASK][MASK][MASK]|<pdi>[MASK][MASK][MASK][MASK][MASK]|<molwt>[MASK][MASK][MASK][MASK][MASK]|[C][Branch1_2][C][=O][O][C@@Hexpl][Branch1_1][C][C][C][Branch1_2][C][=O][O][C@Hexpl][Ring1][Branch2_2][C].[C][C][C][Branch2_1][Ring1][Ring1][N][C][Branch1_1][=C][N][C][=C][C][=C][Branch1_1][Ring1][O][C][C][=C][Ring1][Branch2_1][=S][C][C][C][Ring2][Ring1][C],1,Greedy,1,0,False,,,,,
9
+ Molecules: Polymer,Generate,C1(=O)O[C@@H](C)C(=O)O[C@H]1C.C2CC(NC(NC1=CC=C(OC)C=C1)=S)CCC2,10,Sample,1.3,50,True,0.5,"<pdi>:3.490, <conv>:0.567, <molwt>:3.567",,,C1(=O)O[C@@H](C)C(=O)O[C@H]1C