Spaces:
Runtime error
Runtime error
import spaces | |
import sys | |
import os | |
# os.system(f"git clone https://github.com/Curt-Park/yolo-world-with-efficientvit-sam.git") | |
# cwd0 = os.getcwd() | |
# cwd1 = os.path.join(cwd0, "yolo-world-with-efficientvit-sam") | |
# os.chdir(cwd1) | |
# os.system("make setup") | |
# os.system(f"cd /home/user/app") | |
sys.path.append('./') | |
import gradio as gr | |
import random | |
import numpy as np | |
from gradio_demo.character_template import character_man, lorapath_man | |
from gradio_demo.character_template import character_woman, lorapath_woman | |
from gradio_demo.character_template import styles, lorapath_styles | |
import torch | |
import os | |
from typing import Tuple, List | |
import copy | |
import argparse | |
from diffusers.utils import load_image | |
import cv2 | |
from PIL import Image, ImageOps | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
# from controlnet_aux import OpenposeDetector | |
# from controlnet_aux.open_pose.body import Body | |
try: | |
from inference.models import YOLOWorld | |
from src.efficientvit.models.efficientvit.sam import EfficientViTSamPredictor | |
from src.efficientvit.sam_model_zoo import create_sam_model | |
import supervision as sv | |
except: | |
print("YoloWorld can not be load") | |
try: | |
from groundingdino.models import build_model | |
from groundingdino.util import box_ops | |
from groundingdino.util.slconfig import SLConfig | |
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
from groundingdino.util.inference import annotate, predict | |
from segment_anything import build_sam, SamPredictor | |
import groundingdino.datasets.transforms as T | |
except: | |
print("groundingdino can not be load") | |
from src.pipelines.lora_pipeline import LoraMultiConceptPipeline | |
from src.prompt_attention.p2p_attention import AttentionReplace | |
from diffusers import ControlNetModel, StableDiffusionXLPipeline | |
from src.pipelines.lora_pipeline import revise_regionally_controlnet_forward | |
from download import OMG_download | |
CHARACTER_MAN_NAMES = list(character_man.keys()) | |
CHARACTER_WOMAN_NAMES = list(character_woman.keys()) | |
STYLE_NAMES = list(styles.keys()) | |
MAX_SEED = np.iinfo(np.int32).max | |
### Description | |
title = r""" | |
<h1 align="center">OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</h1> | |
""" | |
description = r""" | |
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/' target='_blank'><b>OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</b></a>.<br> | |
How to use:<br> | |
1. Select two characters. | |
2. Enter a text prompt as done in normal text-to-image models. | |
3. Click the <b>Submit</b> button to start customizing. | |
4. Enjoy the generated image😊! | |
""" | |
article = r""" | |
--- | |
📝 **Citation** | |
<br> | |
If our work is helpful for your research or applications, please cite us via: | |
```bibtex | |
@article{, | |
title={OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models}, | |
author={}, | |
journal={}, | |
year={} | |
} | |
``` | |
""" | |
tips = r""" | |
### Usage tips of OMG | |
1. Input text prompts to describe a man and a woman | |
""" | |
css = ''' | |
.gradio-container {width: 85% !important} | |
''' | |
def sample_image(pipe, | |
input_prompt, | |
input_neg_prompt=None, | |
generator=None, | |
concept_models=None, | |
num_inference_steps=50, | |
guidance_scale=7.5, | |
controller=None, | |
stage=None, | |
region_masks=None, | |
lora_list = None, | |
styleL=None, | |
**extra_kargs | |
): | |
spatial_condition = extra_kargs.pop('spatial_condition') | |
if spatial_condition is not None: | |
spatial_condition_input = [spatial_condition] * len(input_prompt) | |
else: | |
spatial_condition_input = None | |
images = pipe( | |
prompt=input_prompt, | |
concept_models=concept_models, | |
negative_prompt=input_neg_prompt, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
cross_attention_kwargs={"scale": 0.8}, | |
controller=controller, | |
stage=stage, | |
region_masks=region_masks, | |
lora_list=lora_list, | |
styleL=styleL, | |
image=spatial_condition_input, | |
**extra_kargs).images | |
return images | |
def load_image_yoloworld(image_source) -> Tuple[np.array, torch.Tensor]: | |
image = np.asarray(image_source) | |
return image | |
def load_image_dino(image_source) -> Tuple[np.array, torch.Tensor]: | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image = np.asarray(image_source) | |
image_transformed, _ = transform(image_source, None) | |
return image, image_transformed | |
def predict_mask(segmentmodel, sam, image, TEXT_PROMPT, segmentType, confidence = 0.2, threshold = 0.5): | |
if segmentType=='GroundingDINO': | |
image_source, image = load_image_dino(image) | |
boxes, logits, phrases = predict( | |
model=segmentmodel, | |
image=image, | |
caption=TEXT_PROMPT, | |
box_threshold=0.3, | |
text_threshold=0.25 | |
) | |
sam.set_image(image_source) | |
H, W, _ = image_source.shape | |
boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H]) | |
transformed_boxes = sam.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2]).cuda() | |
masks, _, _ = sam.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=transformed_boxes, | |
multimask_output=False, | |
) | |
masks=masks[0].squeeze(0) | |
else: | |
image_source = load_image_yoloworld(image) | |
segmentmodel.set_classes([TEXT_PROMPT]) | |
results = segmentmodel.infer(image_source, confidence=confidence) | |
detections = sv.Detections.from_inference(results).with_nms( | |
class_agnostic=True, threshold=threshold | |
) | |
masks = None | |
if len(detections) != 0: | |
print(TEXT_PROMPT + " detected!") | |
sam.set_image(image_source, image_format="RGB") | |
masks, _, _ = sam.predict(box=detections.xyxy[0], multimask_output=False) | |
masks = torch.from_numpy(masks.squeeze()) | |
return masks | |
def prepare_text(prompt, region_prompts): | |
''' | |
Args: | |
prompt_entity: [subject1]-*-[attribute1]-*-[Location1]|[subject2]-*-[attribute2]-*-[Location2]|[global text] | |
Returns: | |
full_prompt: subject1, attribute1 and subject2, attribute2, global text | |
context_prompt: subject1 and subject2, global text | |
entity_collection: [(subject1, attribute1), Location1] | |
''' | |
region_collection = [] | |
regions = region_prompts.split('|') | |
for region in regions: | |
if region == '': | |
break | |
prompt_region, neg_prompt_region = region.split('-*-') | |
prompt_region = prompt_region.replace('[', '').replace(']', '') | |
neg_prompt_region = neg_prompt_region.replace('[', '').replace(']', '') | |
region_collection.append((prompt_region, neg_prompt_region)) | |
return (prompt, region_collection) | |
def build_model_sd(pretrained_model, controlnet_path, device, prompts): | |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16).to(device) | |
pipe = LoraMultiConceptPipeline.from_pretrained( | |
pretrained_model, controlnet=controlnet, torch_dtype=torch.float16, variant="fp16").to(device) | |
controller = AttentionReplace(prompts, 50, cross_replace_steps={"default_": 1.}, self_replace_steps=0.4, tokenizer=pipe.tokenizer, device=device, dtype=torch.float16, width=1024//32, height=1024//32) | |
revise_regionally_controlnet_forward(pipe.unet, controller) | |
pipe_concept = StableDiffusionXLPipeline.from_pretrained(pretrained_model, torch_dtype=torch.float16, | |
variant="fp16").to(device) | |
return pipe, controller, pipe_concept | |
def build_model_lora(pipe_concept, lora_paths, style_path, condition, args, pipe): | |
pipe_list = [] | |
if condition == "Human pose": | |
controlnet = ControlNetModel.from_pretrained(args.openpose_checkpoint, torch_dtype=torch.float16).to(device) | |
pipe.controlnet = controlnet | |
elif condition == "Canny Edge": | |
controlnet = ControlNetModel.from_pretrained(args.canny_checkpoint, torch_dtype=torch.float16, variant="fp16").to(device) | |
pipe.controlnet = controlnet | |
elif condition == "Depth": | |
controlnet = ControlNetModel.from_pretrained(args.depth_checkpoint, torch_dtype=torch.float16).to(device) | |
pipe.controlnet = controlnet | |
if style_path is not None and os.path.exists(style_path): | |
pipe_concept.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style') | |
pipe.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style') | |
for lora_path in lora_paths.split('|'): | |
adapter_name = lora_path.split('/')[-1].split('.')[0] | |
pipe_concept.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name=adapter_name) | |
pipe_concept.enable_xformers_memory_efficient_attention() | |
pipe_list.append(adapter_name) | |
return pipe_list | |
def build_yolo_segment_model(sam_path, device): | |
yolo_world = YOLOWorld(model_id="yolo_world/l") | |
sam = EfficientViTSamPredictor( | |
create_sam_model(name="xl1", weight_url=sam_path).to(device).eval() | |
) | |
return yolo_world, sam | |
def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'): | |
args = SLConfig.fromfile(ckpt_config_filename) | |
model = build_model(args) | |
args.device = device | |
checkpoint = torch.load(os.path.join(repo_id, filename), map_location='cpu') | |
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) | |
print("Model loaded from {} \n => {}".format(filename, log)) | |
_ = model.eval() | |
return model | |
def build_dino_segment_model(ckpt_repo_id, sam_checkpoint): | |
ckpt_filenmae = "groundingdino_swinb_cogcoor.pth" | |
ckpt_config_filename = os.path.join(ckpt_repo_id, "GroundingDINO_SwinB.cfg.py") | |
groundingdino_model = load_model_hf(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename) | |
sam = build_sam(checkpoint=sam_checkpoint) | |
sam.cuda() | |
sam_predictor = SamPredictor(sam) | |
return groundingdino_model, sam_predictor | |
def resize_and_center_crop(image, output_size=(1024, 576)): | |
width, height = image.size | |
aspect_ratio = width / height | |
new_height = output_size[1] | |
new_width = int(aspect_ratio * new_height) | |
resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
if new_width < output_size[0] or new_height < output_size[1]: | |
padding_color = "gray" | |
resized_image = ImageOps.expand(resized_image, | |
((output_size[0] - new_width) // 2, | |
(output_size[1] - new_height) // 2, | |
(output_size[0] - new_width + 1) // 2, | |
(output_size[1] - new_height + 1) // 2), | |
fill=padding_color) | |
left = (resized_image.width - output_size[0]) / 2 | |
top = (resized_image.height - output_size[1]) / 2 | |
right = (resized_image.width + output_size[0]) / 2 | |
bottom = (resized_image.height + output_size[1]) / 2 | |
cropped_image = resized_image.crop((left, top, right, bottom)) | |
return cropped_image | |
def main(device, segment_type): | |
pipe, controller, pipe_concept = build_model_sd(args.pretrained_sdxl_model, args.openpose_checkpoint, device, prompts_tmp) | |
# if segment_type == 'GroundingDINO': | |
# detect_model, sam = build_dino_segment_model(args.dino_checkpoint, args.sam_checkpoint) | |
# else: | |
# detect_model, sam = build_yolo_segment_model(args.efficientViT_checkpoint, device) | |
resolution_list = ["1440*728", | |
"1344*768", | |
"1216*832", | |
"1152*896", | |
"1024*1024", | |
"896*1152", | |
"832*1216", | |
"768*1344", | |
"728*1440"] | |
ratio_list = [1440 / 728, 1344 / 768, 1216 / 832, 1152 / 896, 1024 / 1024, 896 / 1152, 832 / 1216, 768 / 1344, | |
728 / 1440] | |
condition_list = ["None", | |
"Human pose", | |
"Canny Edge", | |
"Depth"] | |
depth_estimator = DPTForDepthEstimation.from_pretrained(args.dpt_checkpoint).to("cuda") | |
feature_extractor = DPTFeatureExtractor.from_pretrained(args.dpt_checkpoint) | |
# body_model = Body(args.pose_detector_checkpoint) | |
# openpose = OpenposeDetector(body_model) | |
def remove_tips(): | |
return gr.update(visible=False) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def get_humanpose(img): | |
openpose_image = openpose(img) | |
return openpose_image | |
def get_cannyedge(image): | |
image = np.array(image) | |
image = cv2.Canny(image, 100, 200) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image) | |
return canny_image | |
def get_depth(image): | |
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") | |
with torch.no_grad(), torch.autocast("cuda"): | |
depth_map = depth_estimator(image).predicted_depth | |
depth_map = torch.nn.functional.interpolate( | |
depth_map.unsqueeze(1), | |
size=(1024, 1024), | |
mode="bicubic", | |
align_corners=False, | |
) | |
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_map = (depth_map - depth_min) / (depth_max - depth_min) | |
image = torch.cat([depth_map] * 3, dim=1) | |
image = image.permute(0, 2, 3, 1).cpu().numpy()[0] | |
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) | |
return image | |
def generate_image(prompt1, negative_prompt, man, woman, resolution, local_prompt1, local_prompt2, seed, condition, condition_img1, style): | |
try: | |
path1 = lorapath_man[man] | |
path2 = lorapath_woman[woman] | |
pipe_concept.unload_lora_weights() | |
pipe.unload_lora_weights() | |
pipe_list = build_model_lora(pipe_concept, path1 + "|" + path2, lorapath_styles[style], condition, args, pipe) | |
if lorapath_styles[style] is not None and os.path.exists(lorapath_styles[style]): | |
styleL = True | |
else: | |
styleL = False | |
input_list = [prompt1] | |
condition_list = [condition_img1] | |
output_list = [] | |
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1]) | |
kwargs = { | |
'height': height, | |
'width': width, | |
} | |
for prompt, condition_img in zip(input_list, condition_list): | |
if prompt!='': | |
input_prompt = [] | |
p = '{prompt}, 35mm photograph, film, professional, 4k, highly detailed.' | |
if styleL: | |
p = styles[style] + p | |
input_prompt.append([p.replace("{prompt}", prompt), p.replace("{prompt}", prompt)]) | |
if styleL: | |
input_prompt.append([(styles[style] + local_prompt1, character_man.get(man)[1]), | |
(styles[style] + local_prompt2, character_woman.get(woman)[1])]) | |
else: | |
input_prompt.append([(local_prompt1, character_man.get(man)[1]), | |
(local_prompt2, character_woman.get(woman)[1])]) | |
if condition == 'Human pose' and condition_img is not None: | |
index = ratio_list.index( | |
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0]))) | |
resolution = resolution_list[index] | |
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1]) | |
kwargs['height'] = height | |
kwargs['width'] = width | |
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height)) | |
spatial_condition = get_humanpose(condition_img) | |
elif condition == 'Canny Edge' and condition_img is not None: | |
index = ratio_list.index( | |
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0]))) | |
resolution = resolution_list[index] | |
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1]) | |
kwargs['height'] = height | |
kwargs['width'] = width | |
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height)) | |
spatial_condition = get_cannyedge(condition_img) | |
elif condition == 'Depth' and condition_img is not None: | |
index = ratio_list.index( | |
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0]))) | |
resolution = resolution_list[index] | |
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1]) | |
kwargs['height'] = height | |
kwargs['width'] = width | |
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height)) | |
spatial_condition = get_depth(condition_img) | |
else: | |
spatial_condition = None | |
kwargs['spatial_condition'] = spatial_condition | |
controller.reset() | |
image = sample_image( | |
pipe, | |
input_prompt=input_prompt, | |
concept_models=pipe_concept, | |
input_neg_prompt=[negative_prompt] * len(input_prompt), | |
generator=torch.Generator(device).manual_seed(seed), | |
controller=controller, | |
stage=1, | |
lora_list=pipe_list, | |
styleL=styleL, | |
**kwargs) | |
controller.reset() | |
if pipe.tokenizer("man")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]: | |
mask1 = predict_mask(detect_model, sam, image[0], 'man', args.segment_type, confidence=0.15, | |
threshold=0.5) | |
else: | |
mask1 = None | |
if pipe.tokenizer("woman")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]: | |
mask2 = predict_mask(detect_model, sam, image[0], 'woman', args.segment_type, confidence=0.15, | |
threshold=0.5) | |
else: | |
mask2 = None | |
if mask1 is None and mask2 is None: | |
output_list.append(image[1]) | |
else: | |
image = sample_image( | |
pipe, | |
input_prompt=input_prompt, | |
concept_models=pipe_concept, | |
input_neg_prompt=[negative_prompt] * len(input_prompt), | |
generator=torch.Generator(device).manual_seed(seed), | |
controller=controller, | |
stage=2, | |
region_masks=[mask1, mask2], | |
lora_list=pipe_list, | |
styleL=styleL, | |
**kwargs) | |
output_list.append(image[1]) | |
else: | |
output_list.append(None) | |
output_list.append(spatial_condition) | |
return output_list | |
except: | |
print("error") | |
return | |
def get_local_value_man(input): | |
return character_man[input][0] | |
def get_local_value_woman(input): | |
return character_woman[input][0] | |
def generate(prompt): | |
print(os.system(prompt)) | |
return prompt | |
gr.Interface( | |
fn=generate, | |
inputs=gr.Text(), | |
outputs=gr.Gallery(), | |
).launch() | |
def parse_args(): | |
parser = argparse.ArgumentParser('', add_help=False) | |
parser.add_argument('--pretrained_sdxl_model', default='Fucius/stable-diffusion-xl-base-1.0', type=str) | |
parser.add_argument('--openpose_checkpoint', default='thibaud/controlnet-openpose-sdxl-1.0', type=str) | |
parser.add_argument('--canny_checkpoint', default='diffusers/controlnet-canny-sdxl-1.0', type=str) | |
parser.add_argument('--depth_checkpoint', default='diffusers/controlnet-depth-sdxl-1.0', type=str) | |
parser.add_argument('--efficientViT_checkpoint', default='../checkpoint/sam/xl1.pt', type=str) | |
parser.add_argument('--dino_checkpoint', default='./checkpoint/GroundingDINO', type=str) | |
parser.add_argument('--sam_checkpoint', default='./checkpoint/sam/sam_vit_h_4b8939.pth', type=str) | |
parser.add_argument('--dpt_checkpoint', default='Intel/dpt-hybrid-midas', type=str) | |
parser.add_argument('--pose_detector_checkpoint', default='../checkpoint/ControlNet/annotator/ckpts/body_pose_model.pth', type=str) | |
parser.add_argument('--prompt', default='Close-up photo of the cool man and beautiful woman in surprised expressions as they accidentally discover a mysterious island while on vacation by the sea, 35mm photograph, film, professional, 4k, highly detailed.', type=str) | |
parser.add_argument('--negative_prompt', default='noisy, blurry, soft, deformed, ugly', type=str) | |
parser.add_argument('--seed', default=22, type=int) | |
parser.add_argument('--suffix', default='', type=str) | |
parser.add_argument('--segment_type', default='yoloworld', help='GroundingDINO or yoloworld', type=str) | |
return parser.parse_args() | |
if __name__ == '__main__': | |
args = parse_args() | |
prompts = [args.prompt]*2 | |
prompts_tmp = copy.deepcopy(prompts) | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
download = OMG_download() | |
main(device, args.segment_type) |