Spaces:
Runtime error
Runtime error
File size: 22,823 Bytes
15c95d2 1497835 15c95d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import spaces
import sys
import os
# os.system(f"git clone https://github.com/Curt-Park/yolo-world-with-efficientvit-sam.git")
# cwd0 = os.getcwd()
# cwd1 = os.path.join(cwd0, "yolo-world-with-efficientvit-sam")
# os.chdir(cwd1)
# os.system("make setup")
# os.system(f"cd /home/user/app")
sys.path.append('./')
import gradio as gr
import random
import numpy as np
from gradio_demo.character_template import character_man, lorapath_man
from gradio_demo.character_template import character_woman, lorapath_woman
from gradio_demo.character_template import styles, lorapath_styles
import torch
import os
from typing import Tuple, List
import copy
import argparse
from diffusers.utils import load_image
import cv2
from PIL import Image, ImageOps
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
# from controlnet_aux import OpenposeDetector
# from controlnet_aux.open_pose.body import Body
try:
from inference.models import YOLOWorld
from src.efficientvit.models.efficientvit.sam import EfficientViTSamPredictor
from src.efficientvit.sam_model_zoo import create_sam_model
import supervision as sv
except:
print("YoloWorld can not be load")
try:
from groundingdino.models import build_model
from groundingdino.util import box_ops
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
from groundingdino.util.inference import annotate, predict
from segment_anything import build_sam, SamPredictor
import groundingdino.datasets.transforms as T
except:
print("groundingdino can not be load")
from src.pipelines.lora_pipeline import LoraMultiConceptPipeline
from src.prompt_attention.p2p_attention import AttentionReplace
from diffusers import ControlNetModel, StableDiffusionXLPipeline
from src.pipelines.lora_pipeline import revise_regionally_controlnet_forward
from download import OMG_download
CHARACTER_MAN_NAMES = list(character_man.keys())
CHARACTER_WOMAN_NAMES = list(character_woman.keys())
STYLE_NAMES = list(styles.keys())
MAX_SEED = np.iinfo(np.int32).max
### Description
title = r"""
<h1 align="center">OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</h1>
"""
description = r"""
<b>Official ๐ค Gradio demo</b> for <a href='https://github.com/' target='_blank'><b>OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</b></a>.<br>
How to use:<br>
1. Select two characters.
2. Enter a text prompt as done in normal text-to-image models.
3. Click the <b>Submit</b> button to start customizing.
4. Enjoy the generated image๐!
"""
article = r"""
---
๐ **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{,
title={OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models},
author={},
journal={},
year={}
}
```
"""
tips = r"""
### Usage tips of OMG
1. Input text prompts to describe a man and a woman
"""
css = '''
.gradio-container {width: 85% !important}
'''
def sample_image(pipe,
input_prompt,
input_neg_prompt=None,
generator=None,
concept_models=None,
num_inference_steps=50,
guidance_scale=7.5,
controller=None,
stage=None,
region_masks=None,
lora_list = None,
styleL=None,
**extra_kargs
):
spatial_condition = extra_kargs.pop('spatial_condition')
if spatial_condition is not None:
spatial_condition_input = [spatial_condition] * len(input_prompt)
else:
spatial_condition_input = None
images = pipe(
prompt=input_prompt,
concept_models=concept_models,
negative_prompt=input_neg_prompt,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
cross_attention_kwargs={"scale": 0.8},
controller=controller,
stage=stage,
region_masks=region_masks,
lora_list=lora_list,
styleL=styleL,
image=spatial_condition_input,
**extra_kargs).images
return images
def load_image_yoloworld(image_source) -> Tuple[np.array, torch.Tensor]:
image = np.asarray(image_source)
return image
def load_image_dino(image_source) -> Tuple[np.array, torch.Tensor]:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image = np.asarray(image_source)
image_transformed, _ = transform(image_source, None)
return image, image_transformed
def predict_mask(segmentmodel, sam, image, TEXT_PROMPT, segmentType, confidence = 0.2, threshold = 0.5):
if segmentType=='GroundingDINO':
image_source, image = load_image_dino(image)
boxes, logits, phrases = predict(
model=segmentmodel,
image=image,
caption=TEXT_PROMPT,
box_threshold=0.3,
text_threshold=0.25
)
sam.set_image(image_source)
H, W, _ = image_source.shape
boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
transformed_boxes = sam.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2]).cuda()
masks, _, _ = sam.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
masks=masks[0].squeeze(0)
else:
image_source = load_image_yoloworld(image)
segmentmodel.set_classes([TEXT_PROMPT])
results = segmentmodel.infer(image_source, confidence=confidence)
detections = sv.Detections.from_inference(results).with_nms(
class_agnostic=True, threshold=threshold
)
masks = None
if len(detections) != 0:
print(TEXT_PROMPT + " detected!")
sam.set_image(image_source, image_format="RGB")
masks, _, _ = sam.predict(box=detections.xyxy[0], multimask_output=False)
masks = torch.from_numpy(masks.squeeze())
return masks
def prepare_text(prompt, region_prompts):
'''
Args:
prompt_entity: [subject1]-*-[attribute1]-*-[Location1]|[subject2]-*-[attribute2]-*-[Location2]|[global text]
Returns:
full_prompt: subject1, attribute1 and subject2, attribute2, global text
context_prompt: subject1 and subject2, global text
entity_collection: [(subject1, attribute1), Location1]
'''
region_collection = []
regions = region_prompts.split('|')
for region in regions:
if region == '':
break
prompt_region, neg_prompt_region = region.split('-*-')
prompt_region = prompt_region.replace('[', '').replace(']', '')
neg_prompt_region = neg_prompt_region.replace('[', '').replace(']', '')
region_collection.append((prompt_region, neg_prompt_region))
return (prompt, region_collection)
def build_model_sd(pretrained_model, controlnet_path, device, prompts):
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16).to(device)
pipe = LoraMultiConceptPipeline.from_pretrained(
pretrained_model, controlnet=controlnet, torch_dtype=torch.float16, variant="fp16").to(device)
controller = AttentionReplace(prompts, 50, cross_replace_steps={"default_": 1.}, self_replace_steps=0.4, tokenizer=pipe.tokenizer, device=device, dtype=torch.float16, width=1024//32, height=1024//32)
revise_regionally_controlnet_forward(pipe.unet, controller)
pipe_concept = StableDiffusionXLPipeline.from_pretrained(pretrained_model, torch_dtype=torch.float16,
variant="fp16").to(device)
return pipe, controller, pipe_concept
def build_model_lora(pipe_concept, lora_paths, style_path, condition, args, pipe):
pipe_list = []
if condition == "Human pose":
controlnet = ControlNetModel.from_pretrained(args.openpose_checkpoint, torch_dtype=torch.float16).to(device)
pipe.controlnet = controlnet
elif condition == "Canny Edge":
controlnet = ControlNetModel.from_pretrained(args.canny_checkpoint, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.controlnet = controlnet
elif condition == "Depth":
controlnet = ControlNetModel.from_pretrained(args.depth_checkpoint, torch_dtype=torch.float16).to(device)
pipe.controlnet = controlnet
if style_path is not None and os.path.exists(style_path):
pipe_concept.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
pipe.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
for lora_path in lora_paths.split('|'):
adapter_name = lora_path.split('/')[-1].split('.')[0]
pipe_concept.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name=adapter_name)
pipe_concept.enable_xformers_memory_efficient_attention()
pipe_list.append(adapter_name)
return pipe_list
def build_yolo_segment_model(sam_path, device):
yolo_world = YOLOWorld(model_id="yolo_world/l")
sam = EfficientViTSamPredictor(
create_sam_model(name="xl1", weight_url=sam_path).to(device).eval()
)
return yolo_world, sam
def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'):
args = SLConfig.fromfile(ckpt_config_filename)
model = build_model(args)
args.device = device
checkpoint = torch.load(os.path.join(repo_id, filename), map_location='cpu')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(filename, log))
_ = model.eval()
return model
def build_dino_segment_model(ckpt_repo_id, sam_checkpoint):
ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
ckpt_config_filename = os.path.join(ckpt_repo_id, "GroundingDINO_SwinB.cfg.py")
groundingdino_model = load_model_hf(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename)
sam = build_sam(checkpoint=sam_checkpoint)
sam.cuda()
sam_predictor = SamPredictor(sam)
return groundingdino_model, sam_predictor
def resize_and_center_crop(image, output_size=(1024, 576)):
width, height = image.size
aspect_ratio = width / height
new_height = output_size[1]
new_width = int(aspect_ratio * new_height)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
if new_width < output_size[0] or new_height < output_size[1]:
padding_color = "gray"
resized_image = ImageOps.expand(resized_image,
((output_size[0] - new_width) // 2,
(output_size[1] - new_height) // 2,
(output_size[0] - new_width + 1) // 2,
(output_size[1] - new_height + 1) // 2),
fill=padding_color)
left = (resized_image.width - output_size[0]) / 2
top = (resized_image.height - output_size[1]) / 2
right = (resized_image.width + output_size[0]) / 2
bottom = (resized_image.height + output_size[1]) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
def main(device, segment_type):
pipe, controller, pipe_concept = build_model_sd(args.pretrained_sdxl_model, args.openpose_checkpoint, device, prompts_tmp)
# if segment_type == 'GroundingDINO':
# detect_model, sam = build_dino_segment_model(args.dino_checkpoint, args.sam_checkpoint)
# else:
# detect_model, sam = build_yolo_segment_model(args.efficientViT_checkpoint, device)
resolution_list = ["1440*728",
"1344*768",
"1216*832",
"1152*896",
"1024*1024",
"896*1152",
"832*1216",
"768*1344",
"728*1440"]
ratio_list = [1440 / 728, 1344 / 768, 1216 / 832, 1152 / 896, 1024 / 1024, 896 / 1152, 832 / 1216, 768 / 1344,
728 / 1440]
condition_list = ["None",
"Human pose",
"Canny Edge",
"Depth"]
depth_estimator = DPTForDepthEstimation.from_pretrained(args.dpt_checkpoint).to("cuda")
feature_extractor = DPTFeatureExtractor.from_pretrained(args.dpt_checkpoint)
# body_model = Body(args.pose_detector_checkpoint)
# openpose = OpenposeDetector(body_model)
def remove_tips():
return gr.update(visible=False)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_humanpose(img):
openpose_image = openpose(img)
return openpose_image
def get_cannyedge(image):
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
return canny_image
def get_depth(image):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
@spaces.GPU
def generate_image(prompt1, negative_prompt, man, woman, resolution, local_prompt1, local_prompt2, seed, condition, condition_img1, style):
try:
path1 = lorapath_man[man]
path2 = lorapath_woman[woman]
pipe_concept.unload_lora_weights()
pipe.unload_lora_weights()
pipe_list = build_model_lora(pipe_concept, path1 + "|" + path2, lorapath_styles[style], condition, args, pipe)
if lorapath_styles[style] is not None and os.path.exists(lorapath_styles[style]):
styleL = True
else:
styleL = False
input_list = [prompt1]
condition_list = [condition_img1]
output_list = []
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
kwargs = {
'height': height,
'width': width,
}
for prompt, condition_img in zip(input_list, condition_list):
if prompt!='':
input_prompt = []
p = '{prompt}, 35mm photograph, film, professional, 4k, highly detailed.'
if styleL:
p = styles[style] + p
input_prompt.append([p.replace("{prompt}", prompt), p.replace("{prompt}", prompt)])
if styleL:
input_prompt.append([(styles[style] + local_prompt1, character_man.get(man)[1]),
(styles[style] + local_prompt2, character_woman.get(woman)[1])])
else:
input_prompt.append([(local_prompt1, character_man.get(man)[1]),
(local_prompt2, character_woman.get(woman)[1])])
if condition == 'Human pose' and condition_img is not None:
index = ratio_list.index(
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
resolution = resolution_list[index]
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
kwargs['height'] = height
kwargs['width'] = width
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
spatial_condition = get_humanpose(condition_img)
elif condition == 'Canny Edge' and condition_img is not None:
index = ratio_list.index(
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
resolution = resolution_list[index]
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
kwargs['height'] = height
kwargs['width'] = width
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
spatial_condition = get_cannyedge(condition_img)
elif condition == 'Depth' and condition_img is not None:
index = ratio_list.index(
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
resolution = resolution_list[index]
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
kwargs['height'] = height
kwargs['width'] = width
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
spatial_condition = get_depth(condition_img)
else:
spatial_condition = None
kwargs['spatial_condition'] = spatial_condition
controller.reset()
image = sample_image(
pipe,
input_prompt=input_prompt,
concept_models=pipe_concept,
input_neg_prompt=[negative_prompt] * len(input_prompt),
generator=torch.Generator(device).manual_seed(seed),
controller=controller,
stage=1,
lora_list=pipe_list,
styleL=styleL,
**kwargs)
controller.reset()
if pipe.tokenizer("man")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
mask1 = predict_mask(detect_model, sam, image[0], 'man', args.segment_type, confidence=0.15,
threshold=0.5)
else:
mask1 = None
if pipe.tokenizer("woman")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
mask2 = predict_mask(detect_model, sam, image[0], 'woman', args.segment_type, confidence=0.15,
threshold=0.5)
else:
mask2 = None
if mask1 is None and mask2 is None:
output_list.append(image[1])
else:
image = sample_image(
pipe,
input_prompt=input_prompt,
concept_models=pipe_concept,
input_neg_prompt=[negative_prompt] * len(input_prompt),
generator=torch.Generator(device).manual_seed(seed),
controller=controller,
stage=2,
region_masks=[mask1, mask2],
lora_list=pipe_list,
styleL=styleL,
**kwargs)
output_list.append(image[1])
else:
output_list.append(None)
output_list.append(spatial_condition)
return output_list
except:
print("error")
return
def get_local_value_man(input):
return character_man[input][0]
def get_local_value_woman(input):
return character_woman[input][0]
@spaces.GPU
def generate(prompt):
print(os.system(prompt))
return prompt
gr.Interface(
fn=generate,
inputs=gr.Text(),
outputs=gr.Gallery(),
).launch()
def parse_args():
parser = argparse.ArgumentParser('', add_help=False)
parser.add_argument('--pretrained_sdxl_model', default='Fucius/stable-diffusion-xl-base-1.0', type=str)
parser.add_argument('--openpose_checkpoint', default='thibaud/controlnet-openpose-sdxl-1.0', type=str)
parser.add_argument('--canny_checkpoint', default='diffusers/controlnet-canny-sdxl-1.0', type=str)
parser.add_argument('--depth_checkpoint', default='diffusers/controlnet-depth-sdxl-1.0', type=str)
parser.add_argument('--efficientViT_checkpoint', default='../checkpoint/sam/xl1.pt', type=str)
parser.add_argument('--dino_checkpoint', default='./checkpoint/GroundingDINO', type=str)
parser.add_argument('--sam_checkpoint', default='./checkpoint/sam/sam_vit_h_4b8939.pth', type=str)
parser.add_argument('--dpt_checkpoint', default='Intel/dpt-hybrid-midas', type=str)
parser.add_argument('--pose_detector_checkpoint', default='../checkpoint/ControlNet/annotator/ckpts/body_pose_model.pth', type=str)
parser.add_argument('--prompt', default='Close-up photo of the cool man and beautiful woman in surprised expressions as they accidentally discover a mysterious island while on vacation by the sea, 35mm photograph, film, professional, 4k, highly detailed.', type=str)
parser.add_argument('--negative_prompt', default='noisy, blurry, soft, deformed, ugly', type=str)
parser.add_argument('--seed', default=22, type=int)
parser.add_argument('--suffix', default='', type=str)
parser.add_argument('--segment_type', default='yoloworld', help='GroundingDINO or yoloworld', type=str)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
prompts = [args.prompt]*2
prompts_tmp = copy.deepcopy(prompts)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
download = OMG_download()
main(device, args.segment_type) |