File size: 22,823 Bytes
15c95d2
 
1497835
 
15c95d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import spaces
import sys
import os



# os.system(f"git clone https://github.com/Curt-Park/yolo-world-with-efficientvit-sam.git")
# cwd0 = os.getcwd()
# cwd1 = os.path.join(cwd0, "yolo-world-with-efficientvit-sam")
# os.chdir(cwd1)
# os.system("make setup")
# os.system(f"cd /home/user/app")

sys.path.append('./')
import gradio as gr
import random
import numpy as np
from gradio_demo.character_template import character_man, lorapath_man
from gradio_demo.character_template import character_woman, lorapath_woman
from gradio_demo.character_template import styles, lorapath_styles
import torch
import os
from typing import Tuple, List
import copy
import argparse
from diffusers.utils import load_image
import cv2
from PIL import Image, ImageOps
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
# from controlnet_aux import OpenposeDetector
# from controlnet_aux.open_pose.body import Body

try:
    from inference.models import YOLOWorld
    from src.efficientvit.models.efficientvit.sam import EfficientViTSamPredictor
    from src.efficientvit.sam_model_zoo import create_sam_model
    import supervision as sv
except:
    print("YoloWorld can not be load")

try:
    from groundingdino.models import build_model
    from groundingdino.util import box_ops
    from groundingdino.util.slconfig import SLConfig
    from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
    from groundingdino.util.inference import annotate, predict
    from segment_anything import build_sam, SamPredictor
    import groundingdino.datasets.transforms as T
except:
    print("groundingdino can not be load")

from src.pipelines.lora_pipeline import LoraMultiConceptPipeline
from src.prompt_attention.p2p_attention import AttentionReplace
from diffusers import ControlNetModel, StableDiffusionXLPipeline
from src.pipelines.lora_pipeline import revise_regionally_controlnet_forward

from download import OMG_download

CHARACTER_MAN_NAMES = list(character_man.keys())
CHARACTER_WOMAN_NAMES = list(character_woman.keys())
STYLE_NAMES = list(styles.keys())
MAX_SEED = np.iinfo(np.int32).max

### Description
title = r"""
<h1 align="center">OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</h1>
"""

description = r"""
<b>Official ๐Ÿค— Gradio demo</b> for <a href='https://github.com/' target='_blank'><b>OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</b></a>.<br>
How to use:<br>
1. Select two characters.
2. Enter a text prompt as done in normal text-to-image models.
3. Click the <b>Submit</b> button to start customizing.
4. Enjoy the generated image๐Ÿ˜Š!
"""

article = r"""
---
๐Ÿ“ **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{,
title={OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models},
author={},
journal={},
year={}
}
```
"""

tips = r"""
### Usage tips of OMG
1. Input text prompts to describe a man and a woman
"""

css = '''
.gradio-container {width: 85% !important}
'''

def sample_image(pipe,
    input_prompt,
    input_neg_prompt=None,
    generator=None,
    concept_models=None,
    num_inference_steps=50,
    guidance_scale=7.5,
    controller=None,
    stage=None,
    region_masks=None,
    lora_list = None,
    styleL=None,
    **extra_kargs
):

    spatial_condition = extra_kargs.pop('spatial_condition')
    if spatial_condition is not None:
        spatial_condition_input = [spatial_condition] * len(input_prompt)
    else:
        spatial_condition_input = None

    images = pipe(
        prompt=input_prompt,
        concept_models=concept_models,
        negative_prompt=input_neg_prompt,
        generator=generator,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        cross_attention_kwargs={"scale": 0.8},
        controller=controller,
        stage=stage,
        region_masks=region_masks,
        lora_list=lora_list,
        styleL=styleL,
        image=spatial_condition_input,
        **extra_kargs).images

    return images

def load_image_yoloworld(image_source) -> Tuple[np.array, torch.Tensor]:
    image = np.asarray(image_source)
    return image

def load_image_dino(image_source) -> Tuple[np.array, torch.Tensor]:
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image = np.asarray(image_source)
    image_transformed, _ = transform(image_source, None)
    return image, image_transformed

def predict_mask(segmentmodel, sam, image, TEXT_PROMPT, segmentType, confidence = 0.2, threshold = 0.5):
    if segmentType=='GroundingDINO':
        image_source, image = load_image_dino(image)
        boxes, logits, phrases = predict(
            model=segmentmodel,
            image=image,
            caption=TEXT_PROMPT,
            box_threshold=0.3,
            text_threshold=0.25
        )
        sam.set_image(image_source)
        H, W, _ = image_source.shape
        boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])

        transformed_boxes = sam.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2]).cuda()
        masks, _, _ = sam.predict_torch(
            point_coords=None,
            point_labels=None,
            boxes=transformed_boxes,
            multimask_output=False,
        )
        masks=masks[0].squeeze(0)
    else:
        image_source = load_image_yoloworld(image)
        segmentmodel.set_classes([TEXT_PROMPT])
        results = segmentmodel.infer(image_source, confidence=confidence)
        detections = sv.Detections.from_inference(results).with_nms(
            class_agnostic=True, threshold=threshold
        )
        masks = None
        if len(detections) != 0:
            print(TEXT_PROMPT + " detected!")
            sam.set_image(image_source, image_format="RGB")
            masks, _, _ = sam.predict(box=detections.xyxy[0], multimask_output=False)
            masks = torch.from_numpy(masks.squeeze())

    return masks

def prepare_text(prompt, region_prompts):
    '''
    Args:
        prompt_entity: [subject1]-*-[attribute1]-*-[Location1]|[subject2]-*-[attribute2]-*-[Location2]|[global text]
    Returns:
        full_prompt: subject1, attribute1 and subject2, attribute2, global text
        context_prompt: subject1 and subject2, global text
        entity_collection: [(subject1, attribute1), Location1]
    '''
    region_collection = []

    regions = region_prompts.split('|')

    for region in regions:
        if region == '':
            break
        prompt_region, neg_prompt_region = region.split('-*-')
        prompt_region = prompt_region.replace('[', '').replace(']', '')
        neg_prompt_region = neg_prompt_region.replace('[', '').replace(']', '')

        region_collection.append((prompt_region, neg_prompt_region))
    return (prompt, region_collection)


def build_model_sd(pretrained_model, controlnet_path, device, prompts):
    controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16).to(device)
    pipe = LoraMultiConceptPipeline.from_pretrained(
        pretrained_model, controlnet=controlnet, torch_dtype=torch.float16, variant="fp16").to(device)
    controller = AttentionReplace(prompts, 50, cross_replace_steps={"default_": 1.}, self_replace_steps=0.4, tokenizer=pipe.tokenizer, device=device, dtype=torch.float16, width=1024//32, height=1024//32)
    revise_regionally_controlnet_forward(pipe.unet, controller)
    pipe_concept = StableDiffusionXLPipeline.from_pretrained(pretrained_model, torch_dtype=torch.float16,
                                                             variant="fp16").to(device)
    return pipe, controller, pipe_concept

def build_model_lora(pipe_concept, lora_paths, style_path, condition, args, pipe):
    pipe_list = []
    if condition == "Human pose":
        controlnet = ControlNetModel.from_pretrained(args.openpose_checkpoint, torch_dtype=torch.float16).to(device)
        pipe.controlnet = controlnet
    elif condition == "Canny Edge":
        controlnet = ControlNetModel.from_pretrained(args.canny_checkpoint, torch_dtype=torch.float16, variant="fp16").to(device)
        pipe.controlnet = controlnet
    elif condition == "Depth":
        controlnet = ControlNetModel.from_pretrained(args.depth_checkpoint, torch_dtype=torch.float16).to(device)
        pipe.controlnet = controlnet

    if style_path is not None and os.path.exists(style_path):
        pipe_concept.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
        pipe.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')

    for lora_path in lora_paths.split('|'):
        adapter_name = lora_path.split('/')[-1].split('.')[0]
        pipe_concept.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name=adapter_name)
        pipe_concept.enable_xformers_memory_efficient_attention()
        pipe_list.append(adapter_name)
    return pipe_list

def build_yolo_segment_model(sam_path, device):
    yolo_world = YOLOWorld(model_id="yolo_world/l")
    sam = EfficientViTSamPredictor(
        create_sam_model(name="xl1", weight_url=sam_path).to(device).eval()
    )
    return yolo_world, sam

def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'):
    args = SLConfig.fromfile(ckpt_config_filename)
    model = build_model(args)
    args.device = device

    checkpoint = torch.load(os.path.join(repo_id, filename), map_location='cpu')
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    print("Model loaded from {} \n => {}".format(filename, log))
    _ = model.eval()
    return model

def build_dino_segment_model(ckpt_repo_id, sam_checkpoint):
    ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
    ckpt_config_filename = os.path.join(ckpt_repo_id, "GroundingDINO_SwinB.cfg.py")
    groundingdino_model = load_model_hf(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename)
    sam = build_sam(checkpoint=sam_checkpoint)
    sam.cuda()
    sam_predictor = SamPredictor(sam)
    return groundingdino_model, sam_predictor

def resize_and_center_crop(image, output_size=(1024, 576)):
    width, height = image.size
    aspect_ratio = width / height
    new_height = output_size[1]
    new_width = int(aspect_ratio * new_height)

    resized_image = image.resize((new_width, new_height), Image.LANCZOS)

    if new_width < output_size[0] or new_height < output_size[1]:
        padding_color = "gray"
        resized_image = ImageOps.expand(resized_image,
                                        ((output_size[0] - new_width) // 2,
                                         (output_size[1] - new_height) // 2,
                                         (output_size[0] - new_width + 1) // 2,
                                         (output_size[1] - new_height + 1) // 2),
                                        fill=padding_color)

    left = (resized_image.width - output_size[0]) / 2
    top = (resized_image.height - output_size[1]) / 2
    right = (resized_image.width + output_size[0]) / 2
    bottom = (resized_image.height + output_size[1]) / 2

    cropped_image = resized_image.crop((left, top, right, bottom))

    return cropped_image

def main(device, segment_type):
    pipe, controller, pipe_concept = build_model_sd(args.pretrained_sdxl_model, args.openpose_checkpoint, device, prompts_tmp)

    # if segment_type == 'GroundingDINO':
    #     detect_model, sam = build_dino_segment_model(args.dino_checkpoint, args.sam_checkpoint)
    # else:
    #     detect_model, sam = build_yolo_segment_model(args.efficientViT_checkpoint, device)

    resolution_list = ["1440*728",
                       "1344*768",
                       "1216*832",
                       "1152*896",
                       "1024*1024",
                       "896*1152",
                       "832*1216",
                       "768*1344",
                       "728*1440"]
    ratio_list = [1440 / 728, 1344 / 768, 1216 / 832, 1152 / 896, 1024 / 1024, 896 / 1152, 832 / 1216, 768 / 1344,
                  728 / 1440]
    condition_list = ["None",
                      "Human pose",
                      "Canny Edge",
                      "Depth"]

    depth_estimator = DPTForDepthEstimation.from_pretrained(args.dpt_checkpoint).to("cuda")
    feature_extractor = DPTFeatureExtractor.from_pretrained(args.dpt_checkpoint)
    # body_model = Body(args.pose_detector_checkpoint)
    # openpose = OpenposeDetector(body_model)

    def remove_tips():
        return gr.update(visible=False)

    def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        return seed

    def get_humanpose(img):
        openpose_image = openpose(img)
        return openpose_image

    def get_cannyedge(image):
        image = np.array(image)
        image = cv2.Canny(image, 100, 200)
        image = image[:, :, None]
        image = np.concatenate([image, image, image], axis=2)
        canny_image = Image.fromarray(image)
        return canny_image

    def get_depth(image):
        image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
        with torch.no_grad(), torch.autocast("cuda"):
            depth_map = depth_estimator(image).predicted_depth

        depth_map = torch.nn.functional.interpolate(
            depth_map.unsqueeze(1),
            size=(1024, 1024),
            mode="bicubic",
            align_corners=False,
        )
        depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
        depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
        depth_map = (depth_map - depth_min) / (depth_max - depth_min)
        image = torch.cat([depth_map] * 3, dim=1)
        image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
        image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
        return image

    @spaces.GPU
    def generate_image(prompt1, negative_prompt, man, woman, resolution, local_prompt1, local_prompt2, seed, condition, condition_img1, style):
        try:
            path1 = lorapath_man[man]
            path2 = lorapath_woman[woman]
            pipe_concept.unload_lora_weights()
            pipe.unload_lora_weights()
            pipe_list = build_model_lora(pipe_concept, path1 + "|" + path2, lorapath_styles[style], condition, args, pipe)

            if lorapath_styles[style] is not None and os.path.exists(lorapath_styles[style]):
                styleL = True
            else:
                styleL = False

            input_list = [prompt1]
            condition_list = [condition_img1]
            output_list = []

            width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])

            kwargs = {
                'height': height,
                'width': width,
            }

            for prompt, condition_img in zip(input_list, condition_list):
                if prompt!='':
                    input_prompt = []
                    p = '{prompt}, 35mm photograph, film, professional, 4k, highly detailed.'
                    if styleL:
                        p = styles[style] + p
                    input_prompt.append([p.replace("{prompt}", prompt), p.replace("{prompt}", prompt)])
                    if styleL:
                        input_prompt.append([(styles[style] + local_prompt1, character_man.get(man)[1]),
                                             (styles[style] + local_prompt2, character_woman.get(woman)[1])])
                    else:
                        input_prompt.append([(local_prompt1, character_man.get(man)[1]),
                                             (local_prompt2, character_woman.get(woman)[1])])

                    if condition == 'Human pose' and condition_img is not None:
                        index = ratio_list.index(
                            min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
                        resolution = resolution_list[index]
                        width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
                        kwargs['height'] = height
                        kwargs['width'] = width
                        condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
                        spatial_condition = get_humanpose(condition_img)
                    elif condition == 'Canny Edge' and condition_img is not None:
                        index = ratio_list.index(
                            min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
                        resolution = resolution_list[index]
                        width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
                        kwargs['height'] = height
                        kwargs['width'] = width
                        condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
                        spatial_condition = get_cannyedge(condition_img)
                    elif condition == 'Depth' and condition_img is not None:
                        index = ratio_list.index(
                            min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
                        resolution = resolution_list[index]
                        width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
                        kwargs['height'] = height
                        kwargs['width'] = width
                        condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
                        spatial_condition = get_depth(condition_img)
                    else:
                        spatial_condition = None

                    kwargs['spatial_condition'] = spatial_condition
                    controller.reset()
                    image = sample_image(
                        pipe,
                        input_prompt=input_prompt,
                        concept_models=pipe_concept,
                        input_neg_prompt=[negative_prompt] * len(input_prompt),
                        generator=torch.Generator(device).manual_seed(seed),
                        controller=controller,
                        stage=1,
                        lora_list=pipe_list,
                        styleL=styleL,
                        **kwargs)

                    controller.reset()
                    if pipe.tokenizer("man")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
                        mask1 = predict_mask(detect_model, sam, image[0], 'man', args.segment_type, confidence=0.15,
                                             threshold=0.5)
                    else:
                        mask1 = None

                    if pipe.tokenizer("woman")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
                        mask2 = predict_mask(detect_model, sam, image[0], 'woman', args.segment_type, confidence=0.15,
                                             threshold=0.5)
                    else:
                        mask2 = None

                    if mask1 is None and mask2 is None:
                        output_list.append(image[1])
                    else:
                        image = sample_image(
                            pipe,
                            input_prompt=input_prompt,
                            concept_models=pipe_concept,
                            input_neg_prompt=[negative_prompt] * len(input_prompt),
                            generator=torch.Generator(device).manual_seed(seed),
                            controller=controller,
                            stage=2,
                            region_masks=[mask1, mask2],
                            lora_list=pipe_list,
                            styleL=styleL,
                            **kwargs)
                        output_list.append(image[1])
                else:
                    output_list.append(None)
            output_list.append(spatial_condition)
            return output_list
        except:
            print("error")
            return

    def get_local_value_man(input):
        return character_man[input][0]

    def get_local_value_woman(input):
        return character_woman[input][0]

    @spaces.GPU
    def generate(prompt):
        print(os.system(prompt))
        return prompt

    gr.Interface(
        fn=generate,
        inputs=gr.Text(),
        outputs=gr.Gallery(),
    ).launch()



def parse_args():
    parser = argparse.ArgumentParser('', add_help=False)
    parser.add_argument('--pretrained_sdxl_model', default='Fucius/stable-diffusion-xl-base-1.0', type=str)
    parser.add_argument('--openpose_checkpoint', default='thibaud/controlnet-openpose-sdxl-1.0', type=str)
    parser.add_argument('--canny_checkpoint', default='diffusers/controlnet-canny-sdxl-1.0', type=str)
    parser.add_argument('--depth_checkpoint', default='diffusers/controlnet-depth-sdxl-1.0', type=str)
    parser.add_argument('--efficientViT_checkpoint', default='../checkpoint/sam/xl1.pt', type=str)
    parser.add_argument('--dino_checkpoint', default='./checkpoint/GroundingDINO', type=str)
    parser.add_argument('--sam_checkpoint', default='./checkpoint/sam/sam_vit_h_4b8939.pth', type=str)
    parser.add_argument('--dpt_checkpoint', default='Intel/dpt-hybrid-midas', type=str)
    parser.add_argument('--pose_detector_checkpoint', default='../checkpoint/ControlNet/annotator/ckpts/body_pose_model.pth', type=str)
    parser.add_argument('--prompt', default='Close-up photo of the cool man and beautiful woman in surprised expressions as they accidentally discover a mysterious island while on vacation by the sea, 35mm photograph, film, professional, 4k, highly detailed.', type=str)
    parser.add_argument('--negative_prompt', default='noisy, blurry, soft, deformed, ugly', type=str)
    parser.add_argument('--seed', default=22, type=int)
    parser.add_argument('--suffix', default='', type=str)
    parser.add_argument('--segment_type', default='yoloworld', help='GroundingDINO or yoloworld', type=str)
    return parser.parse_args()

if __name__ == '__main__':
    args = parse_args()

    prompts = [args.prompt]*2
    prompts_tmp = copy.deepcopy(prompts)
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    download = OMG_download()
    main(device, args.segment_type)