Fucius commited on
Commit
15c95d2
·
verified ·
1 Parent(s): 56287a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +535 -6
app.py CHANGED
@@ -1,8 +1,537 @@
 
 
1
  import os
2
 
3
- os.system(f"git clone https://github.com/Curt-Park/yolo-world-with-efficientvit-sam.git")
4
- cwd0 = os.getcwd()
5
- cwd1 = os.path.join(cwd0, "yolo-world-with-efficientvit-sam")
6
- os.chdir(cwd1)
7
- os.system("make setup")
8
- os.system("python app.py")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import sys
3
  import os
4
 
5
+
6
+
7
+ # os.system(f"git clone https://github.com/Curt-Park/yolo-world-with-efficientvit-sam.git")
8
+ # cwd0 = os.getcwd()
9
+ # cwd1 = os.path.join(cwd0, "yolo-world-with-efficientvit-sam")
10
+ # os.chdir(cwd1)
11
+ # os.system("make setup")
12
+ # os.system(f"cd /home/user/app")
13
+
14
+ sys.path.append('./')
15
+ import gradio as gr
16
+ import random
17
+ import numpy as np
18
+ from gradio_demo.character_template import character_man, lorapath_man
19
+ from gradio_demo.character_template import character_woman, lorapath_woman
20
+ from gradio_demo.character_template import styles, lorapath_styles
21
+ import torch
22
+ import os
23
+ from typing import Tuple, List
24
+ import copy
25
+ import argparse
26
+ from diffusers.utils import load_image
27
+ import cv2
28
+ from PIL import Image, ImageOps
29
+ from transformers import DPTFeatureExtractor, DPTForDepthEstimation
30
+ # from controlnet_aux import OpenposeDetector
31
+ # from controlnet_aux.open_pose.body import Body
32
+
33
+ try:
34
+ from inference.models import YOLOWorld
35
+ from src.efficientvit.models.efficientvit.sam import EfficientViTSamPredictor
36
+ from src.efficientvit.sam_model_zoo import create_sam_model
37
+ import supervision as sv
38
+ except:
39
+ print("YoloWorld can not be load")
40
+
41
+ try:
42
+ from groundingdino.models import build_model
43
+ from groundingdino.util import box_ops
44
+ from groundingdino.util.slconfig import SLConfig
45
+ from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
46
+ from groundingdino.util.inference import annotate, predict
47
+ from segment_anything import build_sam, SamPredictor
48
+ import groundingdino.datasets.transforms as T
49
+ except:
50
+ print("groundingdino can not be load")
51
+
52
+ from src.pipelines.lora_pipeline import LoraMultiConceptPipeline
53
+ from src.prompt_attention.p2p_attention import AttentionReplace
54
+ from diffusers import ControlNetModel, StableDiffusionXLPipeline
55
+ from src.pipelines.lora_pipeline import revise_regionally_controlnet_forward
56
+
57
+ from download import OMG_download
58
+
59
+ CHARACTER_MAN_NAMES = list(character_man.keys())
60
+ CHARACTER_WOMAN_NAMES = list(character_woman.keys())
61
+ STYLE_NAMES = list(styles.keys())
62
+ MAX_SEED = np.iinfo(np.int32).max
63
+
64
+ ### Description
65
+ title = r"""
66
+ <h1 align="center">OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</h1>
67
+ """
68
+
69
+ description = r"""
70
+ <b>Official 🤗 Gradio demo</b> for <a href='https://github.com/' target='_blank'><b>OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</b></a>.<br>
71
+ How to use:<br>
72
+ 1. Select two characters.
73
+ 2. Enter a text prompt as done in normal text-to-image models.
74
+ 3. Click the <b>Submit</b> button to start customizing.
75
+ 4. Enjoy the generated image😊!
76
+ """
77
+
78
+ article = r"""
79
+ ---
80
+ 📝 **Citation**
81
+ <br>
82
+ If our work is helpful for your research or applications, please cite us via:
83
+ ```bibtex
84
+ @article{,
85
+ title={OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models},
86
+ author={},
87
+ journal={},
88
+ year={}
89
+ }
90
+ ```
91
+ """
92
+
93
+ tips = r"""
94
+ ### Usage tips of OMG
95
+ 1. Input text prompts to describe a man and a woman
96
+ """
97
+
98
+ css = '''
99
+ .gradio-container {width: 85% !important}
100
+ '''
101
+
102
+ def sample_image(pipe,
103
+ input_prompt,
104
+ input_neg_prompt=None,
105
+ generator=None,
106
+ concept_models=None,
107
+ num_inference_steps=50,
108
+ guidance_scale=7.5,
109
+ controller=None,
110
+ stage=None,
111
+ region_masks=None,
112
+ lora_list = None,
113
+ styleL=None,
114
+ **extra_kargs
115
+ ):
116
+
117
+ spatial_condition = extra_kargs.pop('spatial_condition')
118
+ if spatial_condition is not None:
119
+ spatial_condition_input = [spatial_condition] * len(input_prompt)
120
+ else:
121
+ spatial_condition_input = None
122
+
123
+ images = pipe(
124
+ prompt=input_prompt,
125
+ concept_models=concept_models,
126
+ negative_prompt=input_neg_prompt,
127
+ generator=generator,
128
+ guidance_scale=guidance_scale,
129
+ num_inference_steps=num_inference_steps,
130
+ cross_attention_kwargs={"scale": 0.8},
131
+ controller=controller,
132
+ stage=stage,
133
+ region_masks=region_masks,
134
+ lora_list=lora_list,
135
+ styleL=styleL,
136
+ image=spatial_condition_input,
137
+ **extra_kargs).images
138
+
139
+ return images
140
+
141
+ def load_image_yoloworld(image_source) -> Tuple[np.array, torch.Tensor]:
142
+ image = np.asarray(image_source)
143
+ return image
144
+
145
+ def load_image_dino(image_source) -> Tuple[np.array, torch.Tensor]:
146
+ transform = T.Compose(
147
+ [
148
+ T.RandomResize([800], max_size=1333),
149
+ T.ToTensor(),
150
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
151
+ ]
152
+ )
153
+ image = np.asarray(image_source)
154
+ image_transformed, _ = transform(image_source, None)
155
+ return image, image_transformed
156
+
157
+ def predict_mask(segmentmodel, sam, image, TEXT_PROMPT, segmentType, confidence = 0.2, threshold = 0.5):
158
+ if segmentType=='GroundingDINO':
159
+ image_source, image = load_image_dino(image)
160
+ boxes, logits, phrases = predict(
161
+ model=segmentmodel,
162
+ image=image,
163
+ caption=TEXT_PROMPT,
164
+ box_threshold=0.3,
165
+ text_threshold=0.25
166
+ )
167
+ sam.set_image(image_source)
168
+ H, W, _ = image_source.shape
169
+ boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
170
+
171
+ transformed_boxes = sam.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2]).cuda()
172
+ masks, _, _ = sam.predict_torch(
173
+ point_coords=None,
174
+ point_labels=None,
175
+ boxes=transformed_boxes,
176
+ multimask_output=False,
177
+ )
178
+ masks=masks[0].squeeze(0)
179
+ else:
180
+ image_source = load_image_yoloworld(image)
181
+ segmentmodel.set_classes([TEXT_PROMPT])
182
+ results = segmentmodel.infer(image_source, confidence=confidence)
183
+ detections = sv.Detections.from_inference(results).with_nms(
184
+ class_agnostic=True, threshold=threshold
185
+ )
186
+ masks = None
187
+ if len(detections) != 0:
188
+ print(TEXT_PROMPT + " detected!")
189
+ sam.set_image(image_source, image_format="RGB")
190
+ masks, _, _ = sam.predict(box=detections.xyxy[0], multimask_output=False)
191
+ masks = torch.from_numpy(masks.squeeze())
192
+
193
+ return masks
194
+
195
+ def prepare_text(prompt, region_prompts):
196
+ '''
197
+ Args:
198
+ prompt_entity: [subject1]-*-[attribute1]-*-[Location1]|[subject2]-*-[attribute2]-*-[Location2]|[global text]
199
+ Returns:
200
+ full_prompt: subject1, attribute1 and subject2, attribute2, global text
201
+ context_prompt: subject1 and subject2, global text
202
+ entity_collection: [(subject1, attribute1), Location1]
203
+ '''
204
+ region_collection = []
205
+
206
+ regions = region_prompts.split('|')
207
+
208
+ for region in regions:
209
+ if region == '':
210
+ break
211
+ prompt_region, neg_prompt_region = region.split('-*-')
212
+ prompt_region = prompt_region.replace('[', '').replace(']', '')
213
+ neg_prompt_region = neg_prompt_region.replace('[', '').replace(']', '')
214
+
215
+ region_collection.append((prompt_region, neg_prompt_region))
216
+ return (prompt, region_collection)
217
+
218
+
219
+ def build_model_sd(pretrained_model, controlnet_path, device, prompts):
220
+ controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16).to(device)
221
+ pipe = LoraMultiConceptPipeline.from_pretrained(
222
+ pretrained_model, controlnet=controlnet, torch_dtype=torch.float16, variant="fp16").to(device)
223
+ controller = AttentionReplace(prompts, 50, cross_replace_steps={"default_": 1.}, self_replace_steps=0.4, tokenizer=pipe.tokenizer, device=device, dtype=torch.float16, width=1024//32, height=1024//32)
224
+ revise_regionally_controlnet_forward(pipe.unet, controller)
225
+ pipe_concept = StableDiffusionXLPipeline.from_pretrained(pretrained_model, torch_dtype=torch.float16,
226
+ variant="fp16").to(device)
227
+ return pipe, controller, pipe_concept
228
+
229
+ def build_model_lora(pipe_concept, lora_paths, style_path, condition, args, pipe):
230
+ pipe_list = []
231
+ if condition == "Human pose":
232
+ controlnet = ControlNetModel.from_pretrained(args.openpose_checkpoint, torch_dtype=torch.float16).to(device)
233
+ pipe.controlnet = controlnet
234
+ elif condition == "Canny Edge":
235
+ controlnet = ControlNetModel.from_pretrained(args.canny_checkpoint, torch_dtype=torch.float16, variant="fp16").to(device)
236
+ pipe.controlnet = controlnet
237
+ elif condition == "Depth":
238
+ controlnet = ControlNetModel.from_pretrained(args.depth_checkpoint, torch_dtype=torch.float16).to(device)
239
+ pipe.controlnet = controlnet
240
+
241
+ if style_path is not None and os.path.exists(style_path):
242
+ pipe_concept.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
243
+ pipe.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
244
+
245
+ for lora_path in lora_paths.split('|'):
246
+ adapter_name = lora_path.split('/')[-1].split('.')[0]
247
+ pipe_concept.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name=adapter_name)
248
+ pipe_concept.enable_xformers_memory_efficient_attention()
249
+ pipe_list.append(adapter_name)
250
+ return pipe_list
251
+
252
+ def build_yolo_segment_model(sam_path, device):
253
+ yolo_world = YOLOWorld(model_id="yolo_world/l")
254
+ sam = EfficientViTSamPredictor(
255
+ create_sam_model(name="xl1", weight_url=sam_path).to(device).eval()
256
+ )
257
+ return yolo_world, sam
258
+
259
+ def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'):
260
+ args = SLConfig.fromfile(ckpt_config_filename)
261
+ model = build_model(args)
262
+ args.device = device
263
+
264
+ checkpoint = torch.load(os.path.join(repo_id, filename), map_location='cpu')
265
+ log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
266
+ print("Model loaded from {} \n => {}".format(filename, log))
267
+ _ = model.eval()
268
+ return model
269
+
270
+ def build_dino_segment_model(ckpt_repo_id, sam_checkpoint):
271
+ ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
272
+ ckpt_config_filename = os.path.join(ckpt_repo_id, "GroundingDINO_SwinB.cfg.py")
273
+ groundingdino_model = load_model_hf(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename)
274
+ sam = build_sam(checkpoint=sam_checkpoint)
275
+ sam.cuda()
276
+ sam_predictor = SamPredictor(sam)
277
+ return groundingdino_model, sam_predictor
278
+
279
+ def resize_and_center_crop(image, output_size=(1024, 576)):
280
+ width, height = image.size
281
+ aspect_ratio = width / height
282
+ new_height = output_size[1]
283
+ new_width = int(aspect_ratio * new_height)
284
+
285
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
286
+
287
+ if new_width < output_size[0] or new_height < output_size[1]:
288
+ padding_color = "gray"
289
+ resized_image = ImageOps.expand(resized_image,
290
+ ((output_size[0] - new_width) // 2,
291
+ (output_size[1] - new_height) // 2,
292
+ (output_size[0] - new_width + 1) // 2,
293
+ (output_size[1] - new_height + 1) // 2),
294
+ fill=padding_color)
295
+
296
+ left = (resized_image.width - output_size[0]) / 2
297
+ top = (resized_image.height - output_size[1]) / 2
298
+ right = (resized_image.width + output_size[0]) / 2
299
+ bottom = (resized_image.height + output_size[1]) / 2
300
+
301
+ cropped_image = resized_image.crop((left, top, right, bottom))
302
+
303
+ return cropped_image
304
+
305
+ def main(device, segment_type):
306
+ pipe, controller, pipe_concept = build_model_sd(args.pretrained_sdxl_model, args.openpose_checkpoint, device, prompts_tmp)
307
+
308
+ # if segment_type == 'GroundingDINO':
309
+ # detect_model, sam = build_dino_segment_model(args.dino_checkpoint, args.sam_checkpoint)
310
+ # else:
311
+ # detect_model, sam = build_yolo_segment_model(args.efficientViT_checkpoint, device)
312
+
313
+ resolution_list = ["1440*728",
314
+ "1344*768",
315
+ "1216*832",
316
+ "1152*896",
317
+ "1024*1024",
318
+ "896*1152",
319
+ "832*1216",
320
+ "768*1344",
321
+ "728*1440"]
322
+ ratio_list = [1440 / 728, 1344 / 768, 1216 / 832, 1152 / 896, 1024 / 1024, 896 / 1152, 832 / 1216, 768 / 1344,
323
+ 728 / 1440]
324
+ condition_list = ["None",
325
+ "Human pose",
326
+ "Canny Edge",
327
+ "Depth"]
328
+
329
+ depth_estimator = DPTForDepthEstimation.from_pretrained(args.dpt_checkpoint).to("cuda")
330
+ feature_extractor = DPTFeatureExtractor.from_pretrained(args.dpt_checkpoint)
331
+ # body_model = Body(args.pose_detector_checkpoint)
332
+ # openpose = OpenposeDetector(body_model)
333
+
334
+ def remove_tips():
335
+ return gr.update(visible=False)
336
+
337
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
338
+ if randomize_seed:
339
+ seed = random.randint(0, MAX_SEED)
340
+ return seed
341
+
342
+ def get_humanpose(img):
343
+ openpose_image = openpose(img)
344
+ return openpose_image
345
+
346
+ def get_cannyedge(image):
347
+ image = np.array(image)
348
+ image = cv2.Canny(image, 100, 200)
349
+ image = image[:, :, None]
350
+ image = np.concatenate([image, image, image], axis=2)
351
+ canny_image = Image.fromarray(image)
352
+ return canny_image
353
+
354
+ def get_depth(image):
355
+ image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
356
+ with torch.no_grad(), torch.autocast("cuda"):
357
+ depth_map = depth_estimator(image).predicted_depth
358
+
359
+ depth_map = torch.nn.functional.interpolate(
360
+ depth_map.unsqueeze(1),
361
+ size=(1024, 1024),
362
+ mode="bicubic",
363
+ align_corners=False,
364
+ )
365
+ depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
366
+ depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
367
+ depth_map = (depth_map - depth_min) / (depth_max - depth_min)
368
+ image = torch.cat([depth_map] * 3, dim=1)
369
+ image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
370
+ image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
371
+ return image
372
+
373
+ @spaces.GPU
374
+ def generate_image(prompt1, negative_prompt, man, woman, resolution, local_prompt1, local_prompt2, seed, condition, condition_img1, style):
375
+ try:
376
+ path1 = lorapath_man[man]
377
+ path2 = lorapath_woman[woman]
378
+ pipe_concept.unload_lora_weights()
379
+ pipe.unload_lora_weights()
380
+ pipe_list = build_model_lora(pipe_concept, path1 + "|" + path2, lorapath_styles[style], condition, args, pipe)
381
+
382
+ if lorapath_styles[style] is not None and os.path.exists(lorapath_styles[style]):
383
+ styleL = True
384
+ else:
385
+ styleL = False
386
+
387
+ input_list = [prompt1]
388
+ condition_list = [condition_img1]
389
+ output_list = []
390
+
391
+ width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
392
+
393
+ kwargs = {
394
+ 'height': height,
395
+ 'width': width,
396
+ }
397
+
398
+ for prompt, condition_img in zip(input_list, condition_list):
399
+ if prompt!='':
400
+ input_prompt = []
401
+ p = '{prompt}, 35mm photograph, film, professional, 4k, highly detailed.'
402
+ if styleL:
403
+ p = styles[style] + p
404
+ input_prompt.append([p.replace("{prompt}", prompt), p.replace("{prompt}", prompt)])
405
+ if styleL:
406
+ input_prompt.append([(styles[style] + local_prompt1, character_man.get(man)[1]),
407
+ (styles[style] + local_prompt2, character_woman.get(woman)[1])])
408
+ else:
409
+ input_prompt.append([(local_prompt1, character_man.get(man)[1]),
410
+ (local_prompt2, character_woman.get(woman)[1])])
411
+
412
+ if condition == 'Human pose' and condition_img is not None:
413
+ index = ratio_list.index(
414
+ min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
415
+ resolution = resolution_list[index]
416
+ width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
417
+ kwargs['height'] = height
418
+ kwargs['width'] = width
419
+ condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
420
+ spatial_condition = get_humanpose(condition_img)
421
+ elif condition == 'Canny Edge' and condition_img is not None:
422
+ index = ratio_list.index(
423
+ min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
424
+ resolution = resolution_list[index]
425
+ width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
426
+ kwargs['height'] = height
427
+ kwargs['width'] = width
428
+ condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
429
+ spatial_condition = get_cannyedge(condition_img)
430
+ elif condition == 'Depth' and condition_img is not None:
431
+ index = ratio_list.index(
432
+ min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
433
+ resolution = resolution_list[index]
434
+ width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
435
+ kwargs['height'] = height
436
+ kwargs['width'] = width
437
+ condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
438
+ spatial_condition = get_depth(condition_img)
439
+ else:
440
+ spatial_condition = None
441
+
442
+ kwargs['spatial_condition'] = spatial_condition
443
+ controller.reset()
444
+ image = sample_image(
445
+ pipe,
446
+ input_prompt=input_prompt,
447
+ concept_models=pipe_concept,
448
+ input_neg_prompt=[negative_prompt] * len(input_prompt),
449
+ generator=torch.Generator(device).manual_seed(seed),
450
+ controller=controller,
451
+ stage=1,
452
+ lora_list=pipe_list,
453
+ styleL=styleL,
454
+ **kwargs)
455
+
456
+ controller.reset()
457
+ if pipe.tokenizer("man")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
458
+ mask1 = predict_mask(detect_model, sam, image[0], 'man', args.segment_type, confidence=0.15,
459
+ threshold=0.5)
460
+ else:
461
+ mask1 = None
462
+
463
+ if pipe.tokenizer("woman")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
464
+ mask2 = predict_mask(detect_model, sam, image[0], 'woman', args.segment_type, confidence=0.15,
465
+ threshold=0.5)
466
+ else:
467
+ mask2 = None
468
+
469
+ if mask1 is None and mask2 is None:
470
+ output_list.append(image[1])
471
+ else:
472
+ image = sample_image(
473
+ pipe,
474
+ input_prompt=input_prompt,
475
+ concept_models=pipe_concept,
476
+ input_neg_prompt=[negative_prompt] * len(input_prompt),
477
+ generator=torch.Generator(device).manual_seed(seed),
478
+ controller=controller,
479
+ stage=2,
480
+ region_masks=[mask1, mask2],
481
+ lora_list=pipe_list,
482
+ styleL=styleL,
483
+ **kwargs)
484
+ output_list.append(image[1])
485
+ else:
486
+ output_list.append(None)
487
+ output_list.append(spatial_condition)
488
+ return output_list
489
+ except:
490
+ print("error")
491
+ return
492
+
493
+ def get_local_value_man(input):
494
+ return character_man[input][0]
495
+
496
+ def get_local_value_woman(input):
497
+ return character_woman[input][0]
498
+
499
+ @spaces.GPU
500
+ def generate(prompt):
501
+ print(os.system(prompt))
502
+ return prompt
503
+
504
+ gr.Interface(
505
+ fn=generate,
506
+ inputs=gr.Text(),
507
+ outputs=gr.Gallery(),
508
+ ).launch()
509
+
510
+
511
+
512
+ def parse_args():
513
+ parser = argparse.ArgumentParser('', add_help=False)
514
+ parser.add_argument('--pretrained_sdxl_model', default='Fucius/stable-diffusion-xl-base-1.0', type=str)
515
+ parser.add_argument('--openpose_checkpoint', default='thibaud/controlnet-openpose-sdxl-1.0', type=str)
516
+ parser.add_argument('--canny_checkpoint', default='diffusers/controlnet-canny-sdxl-1.0', type=str)
517
+ parser.add_argument('--depth_checkpoint', default='diffusers/controlnet-depth-sdxl-1.0', type=str)
518
+ parser.add_argument('--efficientViT_checkpoint', default='../checkpoint/sam/xl1.pt', type=str)
519
+ parser.add_argument('--dino_checkpoint', default='./checkpoint/GroundingDINO', type=str)
520
+ parser.add_argument('--sam_checkpoint', default='./checkpoint/sam/sam_vit_h_4b8939.pth', type=str)
521
+ parser.add_argument('--dpt_checkpoint', default='Intel/dpt-hybrid-midas', type=str)
522
+ parser.add_argument('--pose_detector_checkpoint', default='../checkpoint/ControlNet/annotator/ckpts/body_pose_model.pth', type=str)
523
+ parser.add_argument('--prompt', default='Close-up photo of the cool man and beautiful woman in surprised expressions as they accidentally discover a mysterious island while on vacation by the sea, 35mm photograph, film, professional, 4k, highly detailed.', type=str)
524
+ parser.add_argument('--negative_prompt', default='noisy, blurry, soft, deformed, ugly', type=str)
525
+ parser.add_argument('--seed', default=22, type=int)
526
+ parser.add_argument('--suffix', default='', type=str)
527
+ parser.add_argument('--segment_type', default='yoloworld', help='GroundingDINO or yoloworld', type=str)
528
+ return parser.parse_args()
529
+
530
+ if __name__ == '__main__':
531
+ args = parse_args()
532
+
533
+ prompts = [args.prompt]*2
534
+ prompts_tmp = copy.deepcopy(prompts)
535
+ device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
536
+ download = OMG_download()
537
+ main(device, args.segment_type)