File size: 8,654 Bytes
ddb86ea
 
ad2b48c
6045345
097d367
ad2b48c
097d367
 
6045345
097d367
6045345
 
 
9493b1b
6045345
 
9105935
0d6708b
9105935
6045345
9493b1b
ddb86ea
 
 
 
 
 
 
 
ce34d64
 
 
 
 
9493b1b
 
3a50377
9493b1b
 
 
 
 
 
 
3a50377
9493b1b
 
6045345
 
 
 
7748f3d
 
 
 
 
 
 
 
 
 
7a490a4
 
6045345
 
 
 
 
 
ddb86ea
6045345
 
 
ddb86ea
dd00657
7748f3d
 
 
c0f50d9
7748f3d
 
 
 
 
 
 
 
c0f50d9
7748f3d
 
 
29936bb
ad2b48c
 
 
6045345
097d367
7748f3d
 
 
 
097d367
 
 
 
 
 
 
6045345
 
2bc1a5b
 
 
6045345
a10a826
6045345
 
 
7a490a4
6045345
 
 
 
ddb86ea
 
 
 
 
 
 
6045345
 
 
 
36aaea0
2bc1a5b
 
 
247825b
6045345
 
 
 
 
ad2b48c
 
 
7748f3d
 
 
dd00657
ddb86ea
9493b1b
7748f3d
0a472e1
 
 
 
7748f3d
 
 
 
 
0a472e1
 
 
 
7748f3d
 
 
0a472e1
 
 
 
7748f3d
6045345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9105935
99383f1
6045345
 
9105935
 
 
 
 
 
 
6045345
 
 
 
 
 
 
 
813aab3
6045345
 
 
 
 
813aab3
99383f1
34c99f9
813aab3
6045345
94f5e41
 
 
 
 
 
 
0d6708b
ce34d64
 
e65aeed
ce34d64
 
9493b1b
6045345
 
 
 
 
94f5e41
 
 
6045345
cc77bab
6045345
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""Module containing the Trainer class and related functions"""

import importlib
import math
import os
import sys
from pathlib import Path

import bitsandbytes as bnb
import torch.cuda
import transformers
from torch import nn
from torch.optim.lr_scheduler import OneCycleLR
from transformers import EarlyStoppingCallback, Trainer
from transformers.trainer_pt_utils import get_parameter_names

from axolotl.utils.schedulers import InterpolatingLogScheduler
from axolotl.utils.callbacks import SavePeftModelCallback


class OneCycleLRSchedulerTrainer(Trainer):
    """
    Trainer subclass that uses the OneCycleLR scheduler
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.lr_scheduler = None

    def create_scheduler(
        self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
    ):
        optimizer = self.optimizer if optimizer is None else optimizer
        num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
        pct_start = num_warmup_steps / num_training_steps

        self.lr_scheduler = OneCycleLR(
            optimizer,
            max_lr=self.args.learning_rate,
            total_steps=num_training_steps,
            pct_start=pct_start,
            div_factor=6,
        )

        return self.lr_scheduler


def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
    total_num_steps = int(
        math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
    )
    warmup_steps = (
        cfg.warmup_steps
        if cfg.warmup_steps is not None
        else min(int(0.03 * total_num_steps), 100)
    )
    logging_steps = (
        cfg.logging_steps
        if cfg.logging_steps is not None
        else max(min(int(0.005 * total_num_steps), 10), 1)
    )
    save_steps = cfg.save_steps
    eval_steps = cfg.eval_steps

    training_arguments_kwargs = {}
    if cfg.bf16 == "full":
        training_arguments_kwargs["bf16_full_eval"] = True
    else:
        training_arguments_kwargs["bf16"] = cfg.bf16
    training_arguments_kwargs["fp16"] = (cfg.fp16 and not cfg.bf16) or False
    training_arguments_kwargs["tf32"] = cfg.tf32
    training_arguments_kwargs["warmup_steps"] = warmup_steps
    training_arguments_kwargs["logging_steps"] = logging_steps
    if cfg.gradient_checkpointing:
        if cfg.gptq:
            from alpaca_lora_4bit.gradient_checkpointing import (
                apply_gradient_checkpointing,
            )

            gradient_checkpointing_ratio = (
                cfg.gradient_checkpointing_ratio
                if cfg.gradient_checkpointing_ratio
                else 1.0
            )
            apply_gradient_checkpointing(
                model, checkpoint_ratio=gradient_checkpointing_ratio
            )
        else:
            training_arguments_kwargs[
                "gradient_checkpointing"
            ] = cfg.gradient_checkpointing
    if cfg.fsdp:
        training_arguments_kwargs["fsdp"] = cfg.fsdp
        if cfg.fsdp_config:
            training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)

    # deepspeed
    if (
        os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true"
        and torch.cuda.device_count() > 1
    ):
        if cfg.deepspeed:
            training_arguments_kwargs["deepspeed"] = cfg.deepspeed
        else:
            # make a guess here
            # TODO search Path("./") for one
            training_arguments_kwargs["deepspeed"] = "./ds_config.json"

    training_args = transformers.TrainingArguments(
        per_device_train_batch_size=cfg.micro_batch_size,
        per_device_eval_batch_size=cfg.eval_batch_size
        if cfg.eval_batch_size is not None
        else cfg.micro_batch_size,
        gradient_accumulation_steps=cfg.gradient_accumulation_steps,
        eval_accumulation_steps=cfg.gradient_accumulation_steps,
        num_train_epochs=cfg.num_epochs,
        learning_rate=cfg.learning_rate,
        evaluation_strategy="steps" if cfg.val_set_size > 0 else "no",
        save_strategy="steps" if save_steps else "epoch",
        eval_steps=eval_steps if cfg.val_set_size > 0 else None,
        save_steps=save_steps,
        output_dir=cfg.output_dir,
        save_total_limit=3,
        load_best_model_at_end=(
            cfg.val_set_size > 0
            and save_steps
            and save_steps % eval_steps == 0
            and cfg.load_in_8bit is not True
        )
        or False,
        ddp_find_unused_parameters=False if cfg.ddp else None,
        group_by_length=cfg.group_by_length,
        report_to="wandb" if cfg.use_wandb else None,
        run_name=cfg.wandb_run_id if cfg.use_wandb else None,
        optim=cfg.optimizer if cfg.optimizer else "adamw_hf",
        lr_scheduler_type=cfg.lr_scheduler
        if cfg.lr_scheduler and cfg.lr_scheduler not in ("one_cycle", "log_sweep")
        else "cosine",
        weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0,
        **training_arguments_kwargs,
    )

    trainer_kwargs = {}

    if cfg.optimizer == "adamw_anyprecision":
        if Path(cfg.torchdistx_path).exists():
            sys.path.append(cfg.torchdistx_path)
            importlib.import_module("torchdistx")
    if (
        cfg.optimizer == "adamw_bnb_8bit"
        and not cfg.gptq
        and "deepspeed" not in training_arguments_kwargs
        and not cfg.fsdp
    ):
        decay_parameters = get_parameter_names(model, [nn.LayerNorm])
        decay_parameters = [name for name in decay_parameters if "bias" not in name]
        optimizer_grouped_parameters = [
            {
                "params": [
                    p
                    for n, p in model.named_parameters()
                    if (n in decay_parameters and p.requires_grad)
                ],
                "weight_decay": training_args.weight_decay,
            },
            {
                "params": [
                    p
                    for n, p in model.named_parameters()
                    if (n not in decay_parameters and p.requires_grad)
                ],
                "weight_decay": 0.0,
            },
        ]

        optimizer = bnb.optim.Adam8bit(
            optimizer_grouped_parameters,
            betas=(training_args.adam_beta1, training_args.adam_beta2),
            eps=training_args.adam_epsilon,
            lr=training_args.learning_rate,
        )

        if cfg.lr_scheduler == "one_cycle":
            lr_scheduler_kwargs = (
                cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {}
            )
            lr_scheduler = OneCycleLR(
                optimizer,
                cfg.learning_rate,
                total_steps=total_num_steps,
                epochs=cfg.num_epochs,
                div_factor=cfg.lr_div_factor if cfg.lr_div_factor else 6,
                **lr_scheduler_kwargs,
            )
        elif cfg.lr_scheduler == "log_sweep":
            lr_scheduler = InterpolatingLogScheduler(
                optimizer,
                cfg.warmup_steps,
                cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10,
                cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10,
            )
        else:
            lr_scheduler = transformers.get_cosine_schedule_with_warmup(
                optimizer,
                training_args.warmup_steps,
                total_num_steps,
            )
        trainer_kwargs["optimizers"] = (optimizer, lr_scheduler)

    callbacks = []
    # TODO on_save callback to sync checkpoints to GCP/AWS in background
    if cfg.early_stopping_patience:
        early_stop_cb = EarlyStoppingCallback(
            cfg.early_stopping_patience,
        )
        callbacks.append(early_stop_cb)

    if cfg.local_rank == 0 and cfg.adapter in ["lora", "qlora"]:  # only save in rank 0
        callbacks.append(SavePeftModelCallback)

    data_collator_kwargs = {
        "padding": True,
    }
    if cfg.collator_pad_to_longest:
        data_collator_kwargs["padding"] = "longest"
    else:
        data_collator_kwargs["pad_to_multiple_of"] = 8

    trainer_cls = (
        OneCycleLRSchedulerTrainer
        if cfg.lr_scheduler == "one_cycle" and (cfg.fsdp or cfg.adapter == "qlora")
        else transformers.Trainer
    )
    trainer = trainer_cls(
        model=model,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        args=training_args,
        data_collator=transformers.DataCollatorForSeq2Seq(
            tokenizer,
            return_tensors="pt",
            **data_collator_kwargs,
        ),
        callbacks=callbacks,
        **trainer_kwargs,
    )

    return trainer