winglian commited on
Commit
7a490a4
·
1 Parent(s): e2e68c3

various fixes

Browse files
src/axolotl/utils/models.py CHANGED
@@ -120,7 +120,6 @@ def load_model(
120
  base_model,
121
  trust_remote_code=True if cfg.trust_remote_code is True else False,
122
  )
123
- config.attn_config['attn_impl'] = 'triton'
124
  model = AutoModelForCausalLM.from_pretrained(
125
  base_model,
126
  config=config,
 
120
  base_model,
121
  trust_remote_code=True if cfg.trust_remote_code is True else False,
122
  )
 
123
  model = AutoModelForCausalLM.from_pretrained(
124
  base_model,
125
  config=config,
src/axolotl/utils/trainer.py CHANGED
@@ -30,16 +30,8 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
30
  if cfg.logging_steps is not None
31
  else max(min(int(0.005 * total_num_steps), 10), 1)
32
  )
33
- save_steps = (
34
- cfg.save_steps
35
- if cfg.save_steps is not None
36
- else min(int(0.05 * total_num_steps), 200)
37
- )
38
- eval_steps = (
39
- cfg.eval_steps
40
- if cfg.eval_steps is not None and save_steps % cfg.eval_steps == 0
41
- else save_steps
42
- )
43
 
44
  training_arguments_kwargs = {}
45
  if cfg.bf16 == "full":
@@ -92,13 +84,13 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
92
  num_train_epochs=cfg.num_epochs,
93
  learning_rate=cfg.learning_rate,
94
  evaluation_strategy="steps" if cfg.val_set_size > 0 else "no",
95
- save_strategy="steps",
96
  eval_steps=eval_steps if cfg.val_set_size > 0 else None,
97
  save_steps=save_steps,
98
  output_dir=cfg.output_dir,
99
  save_total_limit=3,
100
  load_best_model_at_end=True
101
- if cfg.val_set_size > 0 and save_steps % eval_steps == 0 and cfg.load_in_8bit is not True
102
  else False,
103
  ddp_find_unused_parameters=False if cfg.ddp else None,
104
  group_by_length=cfg.group_by_length,
@@ -158,6 +150,7 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
158
  cfg.learning_rate,
159
  total_steps=total_num_steps,
160
  epochs=cfg.num_epochs,
 
161
  **lr_scheduler_kwargs,
162
  )
163
  elif cfg.lr_scheduler == "log_sweep":
 
30
  if cfg.logging_steps is not None
31
  else max(min(int(0.005 * total_num_steps), 10), 1)
32
  )
33
+ save_steps = cfg.save_steps
34
+ eval_steps = cfg.eval_steps
 
 
 
 
 
 
 
 
35
 
36
  training_arguments_kwargs = {}
37
  if cfg.bf16 == "full":
 
84
  num_train_epochs=cfg.num_epochs,
85
  learning_rate=cfg.learning_rate,
86
  evaluation_strategy="steps" if cfg.val_set_size > 0 else "no",
87
+ save_strategy="steps" if save_steps else "epoch",
88
  eval_steps=eval_steps if cfg.val_set_size > 0 else None,
89
  save_steps=save_steps,
90
  output_dir=cfg.output_dir,
91
  save_total_limit=3,
92
  load_best_model_at_end=True
93
+ if cfg.val_set_size > 0 and save_steps is not None and save_steps % eval_steps == 0 and cfg.load_in_8bit is not True
94
  else False,
95
  ddp_find_unused_parameters=False if cfg.ddp else None,
96
  group_by_length=cfg.group_by_length,
 
150
  cfg.learning_rate,
151
  total_steps=total_num_steps,
152
  epochs=cfg.num_epochs,
153
+ div_factor=10,
154
  **lr_scheduler_kwargs,
155
  )
156
  elif cfg.lr_scheduler == "log_sweep":