File size: 31,157 Bytes
5cb7ea4 2495909 3a2edc8 090c24d 3a2edc8 e8c8ea6 3a2edc8 2495909 c6b01e0 77c84e0 638c2da 1daecd1 77c84e0 f083aed f1ebaa0 b33c1d5 2495909 3d2cd80 2495909 712fd27 86b7d22 00568c1 324d59e 2495909 712fd27 7512c3a 2495909 1496441 2495909 db73b94 2495909 db73b94 77c84e0 db73b94 afb31e1 db73b94 2495909 db73b94 5cb7ea4 68b227a c6b01e0 e9da4b9 c6b01e0 e9da4b9 ba9ac72 db73b94 2495909 3765747 db73b94 0f6af36 ddf8150 b715cd5 85326bf 861ceca db73b94 ba9ac72 861ceca 738a057 9bca7db ba9ac72 db73b94 c6b01e0 e9da4b9 04d2813 77c84e0 c6b01e0 04d2813 c6b01e0 04d2813 84169d1 2dc4310 629450c 2dc4310 2e71ff0 c6b01e0 2e71ff0 8a8d1c4 2e71ff0 77c84e0 3765747 04d2813 bdc4bd7 cf61f14 77c84e0 2b222de 9845c5e 5e5296a 2b222de 85b0be2 04d2813 ece0211 501b4d1 ece0211 1daecd1 638c2da ece0211 501b4d1 1daecd1 ff68a95 2e13cef 3765747 ff68a95 3765747 ff68a95 41a4d15 ff68a95 9845c5e 5e5296a ff68a95 919f4ca ff68a95 868c339 77c84e0 f51c9c5 f083aed 629450c b33c1d5 f1ebaa0 b33c1d5 c6b01e0 b33c1d5 c6b01e0 b33c1d5 c6b01e0 b33c1d5 332984d b33c1d5 04d2813 86b7d22 04d2813 86b7d22 2097a09 04d2813 cc7e800 04d2813 68237ea 04d2813 c6b01e0 9e64f42 c6b01e0 46032a1 c6b01e0 8bba642 f7a2263 9e64f42 c6b01e0 5ac3392 c6b01e0 20aa4b5 c6b01e0 20aa4b5 c6b01e0 04a42b6 409ca0f c6b01e0 409ca0f 3cc67d2 c6b01e0 3cc67d2 91cf4ee c6b01e0 b2a4cb4 91cf4ee 04d2813 a9e502e 04d2813 c6b01e0 782b6a4 e65c203 c6b01e0 d7635b7 88e17ff 04d2813 68237ea 04d2813 c6b01e0 04d2813 86b7d22 12de7b7 86b7d22 0a472e1 77c84e0 04d2813 0a472e1 04d2813 861ceca 0a472e1 9bca7db e50ab07 b31038a 94d03c8 e50ab07 94d03c8 e50ab07 54d2ac1 e50ab07 54d2ac1 e50ab07 cf5ae6b 8b12468 629450c 8b12468 7019509 dec66d7 7019509 a1da39c 7019509 712fd27 d25c34c 712fd27 76357dc 04d2813 76357dc f6ecf14 76357dc 04d2813 8552218 861ceca 8552218 861ceca 8552218 c4e4f81 861ceca c4e4f81 738a057 0a472e1 11c48c5 bc97f9c 04d2813 c6b01e0 ba9ac72 63fb3eb ba9ac72 bdfefaf 88e17ff 861ceca 88e17ff bdfefaf ba9ac72 629450c a21935f 2495909 5417824 3c71c8d 5417824 ba9ac72 b0cf397 04a42b6 2495909 1377400 e689069 b64f411 cf5ae6b 5e2d8a4 629450c 5e2d8a4 712fd27 c6b01e0 9135b9e 712fd27 7512c3a 629450c 7512c3a dfd1885 3f6017d dfd1885 e07bd8a b267d24 5ff547d 2495909 5ff547d 08b8ba0 5ff547d ba9ac72 31db0ec 04d2813 bc97f9c afb31e1 c6b01e0 b1cc54b afb31e1 b1cc54b c6b01e0 afb31e1 1496441 411293b 1496441 638c2da 1496441 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
# Axolotl
Axolotl is a tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures.
Features:
- Train various Huggingface models such as llama, pythia, falcon, mpt
- Supports fullfinetune, lora, qlora, relora, and gptq
- Customize configurations using a simple yaml file or CLI overwrite
- Load different dataset formats, use custom formats, or bring your own tokenized datasets
- Integrated with xformer, flash attention, rope scaling, and multipacking
- Works with single GPU or multiple GPUs via FSDP or Deepspeed
- Easily run with Docker locally or on the cloud
- Log results and optionally checkpoints to wandb or mlflow
- And more!
<a href="https://www.phorm.ai/query?projectId=e315ba4a-4e14-421f-ab05-38a1f9076f25">
<img alt="phorm.ai" src="https://img.shields.io/badge/Phorm-Ask_AI-%23F2777A.svg?&logo=">
</a>
<table>
<tr>
<td>
## Table of Contents
- [Introduction](#axolotl)
- [Supported Features](#axolotl-supports)
- [Quickstart](#quickstart-)
- [Environment](#environment)
- [Docker](#docker)
- [Conda/Pip venv](#condapip-venv)
- [Cloud GPU](#cloud-gpu) - Latitude.sh, JarvisLabs, RunPod
- [Bare Metal Cloud GPU](#bare-metal-cloud-gpu)
- [Windows](#windows)
- [Mac](#mac)
- [Google Colab](#google-colab)
- [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot)
- [Dataset](#dataset)
- [Config](#config)
- [Train](#train)
- [Inference](#inference-playground)
- [Merge LORA to Base](#merge-lora-to-base)
- [Special Tokens](#special-tokens)
- [All Config Options](#all-config-options)
- Advanced Topics
- [Multipack](./docs/multipack.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
- [RLHF & DPO](./docs/rlhf.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
- [Common Errors](#common-errors-)
- [Tokenization Mismatch b/w Training & Inference](#tokenization-mismatch-bw-inference--training)
- [Debugging Axolotl](#debugging-axolotl)
- [Need Help?](#need-help-)
- [Badge](#badge-)
- [Community Showcase](#community-showcase)
- [Contributing](#contributing-)
- [Sponsors](#sponsors-)
</td>
<td>
<div align="center">
<img src="image/axolotl.png" alt="axolotl" width="160">
<div>
<p>
<b>Axolotl provides a unified repository for fine-tuning <br />a variety of AI models with ease</b>
</p>
<p>
Go ahead and Axolotl questions!!
</p>
<img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit">
<img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main">
</div>
</div>
</td>
</tr>
</table>
## Axolotl supports
| | fp16/fp32 | lora | qlora | gptq | gptq w/flash attn | flash attn | xformers attn |
|-------------|:----------|:-----|-------|------|-------------------|------------|--------------|
| llama | β
| β
| β
| β
| β
| β
| β
|
| Mistral | β
| β
| β
| β
| β
| β
| β
|
| Mixtral-MoE | β
| β
| β
| β | β | β | β |
| Pythia | β
| β
| β
| β | β | β | β |
| cerebras | β
| β
| β
| β | β | β | β |
| btlm | β
| β
| β
| β | β | β | β |
| mpt | β
| β | β | β | β | β | β |
| falcon | β
| β
| β
| β | β | β | β |
| gpt-j | β
| β
| β
| β | β | β | β |
| XGen | β
| β | β
| β | β | β | β
|
| phi | β
| β
| β
| β | β | β | β |
| RWKV | β
| β | β | β | β | β | β |
| Qwen | β
| β
| β
| β | β | β | β |
| Gemma | β
| β
| β
| β | β | β
| β |
β
: supported
β: not supported
β: untested
## Quickstart β‘
Get started with Axolotl in just a few steps! This quickstart guide will walk you through setting up and running a basic fine-tuning task.
**Requirements**: Python >=3.10 and Pytorch >=2.1.1.
```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
cd axolotl
pip3 install packaging
pip3 install -e '.[flash-attn,deepspeed]'
```
### Usage
```bash
# preprocess datasets - optional but recommended
CUDA_VISIBLE_DEVICES="" python -m axolotl.cli.preprocess examples/openllama-3b/lora.yml
# finetune lora
accelerate launch -m axolotl.cli.train examples/openllama-3b/lora.yml
# inference
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
--lora_model_dir="./lora-out"
# gradio
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
--lora_model_dir="./lora-out" --gradio
# remote yaml files - the yaml config can be hosted on a public URL
# Note: the yaml config must directly link to the **raw** yaml
accelerate launch -m axolotl.cli.train https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/examples/openllama-3b/lora.yml
```
## Advanced Setup
### Environment
#### Docker
```bash
docker run --gpus '"all"' --rm -it winglian/axolotl:main-latest
```
Or run on the current files for development:
```sh
docker compose up -d
```
>[!Tip]
> If you want to debug axolotl or prefer to use Docker as your development environment, see the [debugging guide's section on Docker](docs/debugging.qmd#debugging-with-docker).
<details>
<summary>Docker advanced</summary>
A more powerful Docker command to run would be this:
```bash
docker run --privileged --gpus '"all"' --shm-size 10g --rm -it --name axolotl --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --mount type=bind,src="${PWD}",target=/workspace/axolotl -v ${HOME}/.cache/huggingface:/root/.cache/huggingface winglian/axolotl:main-latest
```
It additionally:
* Prevents memory issues when running e.g. deepspeed (e.g. you could hit SIGBUS/signal 7 error) through `--ipc` and `--ulimit` args.
* Persists the downloaded HF data (models etc.) and your modifications to axolotl code through `--mount`/`-v` args.
* The `--name` argument simply makes it easier to refer to the container in vscode (`Dev Containers: Attach to Running Container...`) or in your terminal.
* The `--privileged` flag gives all capabilities to the container.
* The `--shm-size 10g` argument increases the shared memory size. Use this if you see `exitcode: -7` errors using deepspeed.
[More information on nvidia website](https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html#setincshmem)
</details>
#### Conda/Pip venv
1. Install python >=**3.10**
2. Install pytorch stable https://pytorch.org/get-started/locally/
3. Install Axolotl along with python dependencies
```bash
pip3 install packaging
pip3 install -e '.[flash-attn,deepspeed]'
```
4. (Optional) Login to Huggingface to use gated models/datasets.
```bash
huggingface-cli login
```
Get the token at huggingface.co/settings/tokens
#### Cloud GPU
For cloud GPU providers that support docker images, use [`winglian/axolotl-cloud:main-latest`](https://hub.docker.com/r/winglian/axolotl-cloud/tags)
- on Latitude.sh use this [direct link](https://latitude.sh/blueprint/989e0e79-3bf6-41ea-a46b-1f246e309d5c)
- on JarvisLabs.ai use this [direct link](https://jarvislabs.ai/templates/axolotl)
- on RunPod use this [direct link](https://runpod.io/gsc?template=v2ickqhz9s&ref=6i7fkpdz)
#### Bare Metal Cloud GPU
##### LambdaLabs
<details>
<summary>Click to Expand</summary>
1. Install python
```bash
sudo apt update
sudo apt install -y python3.10
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1
sudo update-alternatives --config python # pick 3.10 if given option
python -V # should be 3.10
```
2. Install pip
```bash
wget https://bootstrap.pypa.io/get-pip.py
python get-pip.py
```
3. Install torch
```bash
pip3 install -U torch --index-url https://download.pytorch.org/whl/cu118
```
4. Axolotl
```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
cd axolotl
pip3 install packaging
pip3 install -e '.[flash-attn,deepspeed]'
pip3 install protobuf==3.20.3
pip3 install -U --ignore-installed requests Pillow psutil scipy
```
5. Set path
```bash
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
```
</details>
##### GCP
<details>
<summary>Click to Expand</summary>
Use a Deeplearning linux OS with cuda and pytorch installed. Then follow instructions on quickstart.
Make sure to run the below to uninstall xla.
```bash
pip uninstall -y torch_xla[tpu]
```
</details>
#### Windows
Please use WSL or Docker!
#### Mac
Use the below instead of the install method in QuickStart.
```
pip3 install -e '.'
```
More info: [mac.md](/docs/mac.qmd)
#### Google Colab
Please use this example [notebook](examples/colab-notebooks/colab-axolotl-example.ipynb).
#### Launching on public clouds via SkyPilot
To launch on GPU instances (both on-demand and spot instances) on 7+ clouds (GCP, AWS, Azure, OCI, and more), you can use [SkyPilot](https://skypilot.readthedocs.io/en/latest/index.html):
```bash
pip install "skypilot-nightly[gcp,aws,azure,oci,lambda,kubernetes,ibm,scp]" # choose your clouds
sky check
```
Get the [example YAMLs](https://github.com/skypilot-org/skypilot/tree/master/llm/axolotl) of using Axolotl to finetune `mistralai/Mistral-7B-v0.1`:
```
git clone https://github.com/skypilot-org/skypilot.git
cd skypilot/llm/axolotl
```
Use one command to launch:
```bash
# On-demand
HF_TOKEN=xx sky launch axolotl.yaml --env HF_TOKEN
# Managed spot (auto-recovery on preemption)
HF_TOKEN=xx BUCKET=<unique-name> sky spot launch axolotl-spot.yaml --env HF_TOKEN --env BUCKET
```
### Dataset
Axolotl supports a variety of dataset formats. It is recommended to use a JSONL. The schema of the JSONL depends upon the task and the prompt template you wish to use. Instead of a JSONL, you can also use a HuggingFace dataset with columns for each JSONL field.
See [these docs](https://openaccess-ai-collective.github.io/axolotl/docs/dataset-formats/) for more information on how to use different dataset formats.
### Config
See [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are:
- model
```yaml
base_model: ./llama-7b-hf # local or huggingface repo
```
Note: The code will load the right architecture.
- dataset
```yaml
datasets:
# huggingface repo
- path: vicgalle/alpaca-gpt4
type: alpaca
# huggingface repo with specific configuration/subset
- path: EleutherAI/pile
name: enron_emails
type: completion # format from earlier
field: text # Optional[str] default: text, field to use for completion data
# huggingface repo with multiple named configurations/subsets
- path: bigcode/commitpackft
name:
- ruby
- python
- typescript
type: ... # unimplemented custom format
# fastchat conversation
# See 'conversation' options: https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
- path: ...
type: sharegpt
conversation: chatml # default: vicuna_v1.1
# local
- path: data.jsonl # or json
ds_type: json # see other options below
type: alpaca
# dataset with splits, but no train split
- path: knowrohit07/know_sql
type: context_qa.load_v2
train_on_split: validation
# loading from s3 or gcs
# s3 creds will be loaded from the system default and gcs only supports public access
- path: s3://path_to_ds # Accepts folder with arrow/parquet or file path like above. Supports s3, gcs.
...
# Loading Data From a Public URL
# - The file format is `json` (which includes `jsonl`) by default. For different formats, adjust the `ds_type` option accordingly.
- path: https://some.url.com/yourdata.jsonl # The URL should be a direct link to the file you wish to load. URLs must use HTTPS protocol, not HTTP.
ds_type: json # this is the default, see other options below.
```
- loading
```yaml
load_in_4bit: true
load_in_8bit: true
bf16: auto # require >=ampere, auto will detect if your GPU supports this and choose automatically.
fp16: # leave empty to use fp16 when bf16 is 'auto'. set to false if you want to fallback to fp32
tf32: true # require >=ampere
bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision)
float16: true # use instead of fp16 when you don't want AMP
```
Note: Repo does not do 4-bit quantization.
- lora
```yaml
adapter: lora # 'qlora' or leave blank for full finetune
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
```
#### All Config Options
See [these docs](docs/config.qmd) for all config options.
<details>
<summary> Understanding of batch size and gradient accumulation steps </summary>
<br/>
Gradient accumulation means accumulating gradients over several mini-batches and updating the model weights afterward. When the samples in each batch are diverse, this technique doesn't significantly impact learning.
This method allows for effective training with larger effective batch sizes without needing proportionally larger memory. Here's why:
1. **Memory Consumption with Batch Size**: The primary reason increasing the batch size impacts memory is due to the storage requirements for intermediate activations. When you forward propagate a batch through a network, you have to store the activations at each layer for each sample in the batch, because these activations are used during backpropagation to compute gradients. Therefore, larger batches mean more activations, leading to greater GPU memory consumption.
2. **Gradient Accumulation**: With gradient accumulation, you're effectively simulating a larger batch size by accumulating gradients over several smaller batches (or micro-batches). However, at any given time, you're only forward and backward propagating a micro-batch. This means you only store activations for the micro-batch, not the full accumulated batch. As a result, you can simulate the effect of a larger batch size without the memory cost of storing activations for a large batch.
**Example 1:**
Micro batch size: 3
Gradient accumulation steps: 2
Number of GPUs: 3
Total batch size = 3 * 2 * 3 = 18
```
| GPU 1 | GPU 2 | GPU 3 |
|----------------|----------------|----------------|
| S1, S2, S3 | S4, S5, S6 | S7, S8, S9 |
| e1, e2, e3 | e4, e5, e6 | e7, e8, e9 |
|----------------|----------------|----------------|
| β (accumulate) | β (accumulate) | β (accumulate) |
|----------------|----------------|----------------|
| S10, S11, S12 | S13, S14, S15 | S16, S17, S18 |
| e10, e11, e12 | e13, e14, e15 | e16, e17, e18 |
|----------------|----------------|----------------|
| β (apply) | β (apply) | β (apply) |
Accumulated gradient for the weight w1 after the second iteration (considering all GPUs):
Total gradient for w1 = e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 + e9 + e10 + e11 + e12 + e13 + e14 + e15 + e16 + e17 + e18
Weight update for w1:
w1_new = w1_old - learning rate x (Total gradient for w1 / 18)
```
**Example 2:**
Micro batch size: 2
Gradient accumulation steps: 1
Number of GPUs: 3
Total batch size = 2 * 1 * 3 = 6
```
| GPU 1 | GPU 2 | GPU 3 |
|-----------|-----------|-----------|
| S1, S2 | S3, S4 | S5, S6 |
| e1, e2 | e3, e4 | e5, e6 |
|-----------|-----------|-----------|
| β (apply) | β (apply) | β (apply) |
Accumulated gradient for the weight w1 (considering all GPUs):
Total gradient for w1 = e1 + e2 + e3 + e4 + e5 + e6
Weight update for w1:
w1_new = w1_old - learning rate Γ (Total gradient for w1 / 6)
```
</details>
### Train
Run
```bash
accelerate launch -m axolotl.cli.train your_config.yml
```
> [!TIP]
> You can also reference a config file that is hosted on a public URL, for example `accelerate launch -m axolotl.cli.train https://yourdomain.com/your_config.yml`
#### Preprocess dataset
You can optionally pre-tokenize dataset with the following before finetuning.
This is recommended for large datasets.
- Set `dataset_prepared_path:` to a local folder for saving and loading pre-tokenized dataset.
- (Optional): Set `push_dataset_to_hub: hf_user/repo` to push it to Huggingface.
- (Optional): Use `--debug` to see preprocessed examples.
```bash
python -m axolotl.cli.preprocess your_config.yml
```
#### Multi-GPU
Below are the options available in axolotl for training with multiple GPUs. Note that DeepSpeed
is the recommended multi-GPU option currently because FSDP may experience
[loss instability](https://github.com/huggingface/transformers/issues/26498).
##### DeepSpeed
Deepspeed is an optimization suite for multi-gpu systems allowing you to train much larger models than you
might typically be able to fit into your GPU's VRAM. More information about the various optimization types
for deepspeed is available at https://huggingface.co/docs/accelerate/main/en/usage_guides/deepspeed#what-is-integrated
We provide several default deepspeed JSON configurations for ZeRO stage 1, 2, and 3.
```yaml
deepspeed: deepspeed_configs/zero1.json
```
```shell
accelerate launch -m axolotl.cli.train examples/llama-2/config.py --deepspeed deepspeed_configs/zero1.json
```
##### FSDP
- llama FSDP
```yaml
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_offload_params: true
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
```
##### FSDP + QLoRA
Axolotl supports training with FSDP and QLoRA, see [these docs](docs/fsdp_qlora.qmd) for more information.
##### Weights & Biases Logging
Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
- wandb options
```yaml
wandb_mode:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
```
##### Special Tokens
It is important to have special tokens like delimiters, end-of-sequence, beginning-of-sequence in your tokenizer's vocabulary. This will help you avoid tokenization issues and help your model train better. You can do this in axolotl like this:
```yml
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
tokens: # these are delimiters
- "<|im_start|>"
- "<|im_end|>"
```
When you include these tokens in your axolotl config, axolotl adds these tokens to the tokenizer's vocabulary.
### Inference Playground
Axolotl allows you to load your model in an interactive terminal playground for quick experimentation.
The config file is the same config file used for training.
Pass the appropriate flag to the inference command, depending upon what kind of model was trained:
- Pretrained LORA:
```bash
python -m axolotl.cli.inference examples/your_config.yml --lora_model_dir="./lora-output-dir"
```
- Full weights finetune:
```bash
python -m axolotl.cli.inference examples/your_config.yml --base_model="./completed-model"
```
- Full weights finetune w/ a prompt from a text file:
```bash
cat /tmp/prompt.txt | python -m axolotl.cli.inference examples/your_config.yml \
--base_model="./completed-model" --prompter=None --load_in_8bit=True
```
-- With gradio hosting
```bash
python -m axolotl.cli.inference examples/your_config.yml --gradio
```
Please use `--sample_packing False` if you have it on and receive the error similar to below:
> RuntimeError: stack expects each tensor to be equal size, but got [1, 32, 1, 128] at entry 0 and [1, 32, 8, 128] at entry 1
### Merge LORA to base
The following command will merge your LORA adapater with your base model. You can optionally pass the argument `--lora_model_dir` to specify the directory where your LORA adapter was saved, otherwhise, this will be inferred from `output_dir` in your axolotl config file. The merged model is saved in the sub-directory `{lora_model_dir}/merged`.
```bash
python3 -m axolotl.cli.merge_lora your_config.yml --lora_model_dir="./completed-model"
```
You may need to use the `gpu_memory_limit` and/or `lora_on_cpu` config options to avoid running out of memory. If you still run out of CUDA memory, you can try to merge in system RAM with
```bash
CUDA_VISIBLE_DEVICES="" python3 -m axolotl.cli.merge_lora ...
```
although this will be very slow, and using the config options above are recommended instead.
## Common Errors π§°
See also the [FAQ's](./docs/faq.qmd) and [debugging guide](docs/debugging.qmd).
> If you encounter a 'Cuda out of memory' error, it means your GPU ran out of memory during the training process. Here's how to resolve it:
Please reduce any below
- `micro_batch_size`
- `eval_batch_size`
- `gradient_accumulation_steps`
- `sequence_len`
If it does not help, try running without deepspeed and without accelerate (replace "accelerate launch" with "python") in the command.
Using adamw_bnb_8bit might also save you some memory.
> `failed (exitcode: -9)`
Usually means your system has run out of system memory.
Similarly, you should consider reducing the same settings as when you run out of VRAM.
Additionally, look into upgrading your system RAM which should be simpler than GPU upgrades.
> RuntimeError: expected scalar type Float but found Half
Try set `fp16: true`
> NotImplementedError: No operator found for `memory_efficient_attention_forward` ...
Try to turn off xformers.
> accelerate config missing
It's safe to ignore it.
> NCCL Timeouts during training
See the [NCCL](docs/nccl.qmd) guide.
### Tokenization Mismatch b/w Inference & Training
For many formats, Axolotl constructs prompts by concatenating token ids _after_ tokenizing strings. The reason for concatenating token ids rather than operating on strings is to maintain precise accounting for attention masks.
If you decode a prompt constructed by axolotl, you might see spaces between tokens (or lack thereof) that you do not expect, especially around delimiters and special tokens. When you are starting out with a new format, you should always do the following:
1. Materialize some data using `python -m axolotl.cli.preprocess your_config.yml --debug`, and then decode the first few rows with your model's tokenizer.
2. During inference, right before you pass a tensor of token ids to your model, decode these tokens back into a string.
3. Make sure the inference string from #2 looks **exactly** like the data you fine tuned on from #1, including spaces and new lines. If they aren't the same, adjust your inference server accordingly.
4. As an additional troubleshooting step, you can look at the token ids between 1 and 2 to make sure they are identical.
Having misalignment between your prompts during training and inference can cause models to perform very poorly, so it is worth checking this. See [this blog post](https://hamel.dev/notes/llm/05_tokenizer_gotchas.html) for a concrete example.
## Debugging Axolotl
See [this debugging guide](docs/debugging.qmd) for tips on debugging Axolotl, along with an example configuration for debugging with VSCode.
## Need help? π
Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we our community members can help you.
Need dedicated support? Please contact us at [βοΈ[email protected]](mailto:[email protected]) for dedicated support options.
## Badge β€π·οΈ
Building something cool with Axolotl? Consider adding a badge to your model card.
```markdown
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
```
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## Community Showcase
Check out some of the projects and models that have been built using Axolotl! Have a model you'd like to add to our Community Showcase? Open a PR with your model.
Open Access AI Collective
- [Minotaur 13b](https://huggingface.co/openaccess-ai-collective/minotaur-13b-fixed)
- [Manticore 13b](https://huggingface.co/openaccess-ai-collective/manticore-13b)
- [Hippogriff 30b](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat)
PocketDoc Labs
- [Dan's PersonalityEngine 13b LoRA](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA)
## Contributing π€
Please read the [contributing guide](./.github/CONTRIBUTING.md)
Bugs? Please check the [open issues](https://github.com/OpenAccess-AI-Collective/axolotl/issues/bug) else create a new Issue.
PRs are **greatly welcome**!
Please run below to setup env
```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
cd axolotl
pip3 install packaging
pip3 install -e '.[flash-attn,deepspeed]'
pip3 install -r requirements-dev.txt -r requirements-tests.txt
pre-commit install
# test
pytest tests/
# optional: run against all files
pre-commit run --all-files
```
Thanks to all of our contributors to date. Help drive open source AI progress forward by contributing to Axolotl.
<a href="https://github.com/openaccess-ai-collective/axolotl/graphs/contributors">
<img src="https://contrib.rocks/image?repo=openaccess-ai-collective/axolotl" alt="contributor chart by https://contrib.rocks"/>
</a>
## Sponsors π€β€
OpenAccess AI Collective is run by volunteer contributors such as [winglian](https://github.com/winglian),
[NanoCode012](https://github.com/NanoCode012), [tmm1](https://github.com/tmm1),
[mhenrichsen](https://github.com/mhenrichsen), [casper-hansen](https://github.com/casper-hansen),
[hamelsmu](https://github.com/hamelsmu) and many more who help us accelerate forward by fixing bugs, answering
community questions and implementing new features. Axolotl needs donations from sponsors for the compute needed to
run our unit & integration tests, troubleshooting community issues, and providing bounties. If you love axolotl,
consider sponsoring the project via [GitHub Sponsors](https://github.com/sponsors/OpenAccess-AI-Collective),
[Ko-fi](https://ko-fi.com/axolotl_ai) or reach out directly to
[[email protected]](mailto:[email protected]).
---
#### π Diamond Sponsors - [Contact directly](mailto:[email protected])
---
#### π₯ Gold Sponsors - $5000/mo
---
#### π₯ Silver Sponsors - $1000/mo
---
#### π₯ Bronze Sponsors - $500/mo
- [JarvisLabs.ai](https://jarvislabs.ai)
---
|