Mps mistral lora (#1292) [skip ci]
Browse files* Lora example for Mistral on MPS backend
* Add some MPS documentation
* Update examples/mistral/lora-mps.yml
Co-authored-by: NanoCode012 <[email protected]>
* Update examples/mistral/lora-mps.yml
Co-authored-by: NanoCode012 <[email protected]>
* Update README.md
---------
Co-authored-by: NanoCode012 <[email protected]>
Co-authored-by: Wing Lian <[email protected]>
- .gitignore +5 -0
- README.md +17 -1
- docs/mac.md +18 -0
- examples/mistral/lora-mps.yml +79 -0
.gitignore
CHANGED
@@ -167,3 +167,8 @@ cython_debug/
|
|
167 |
# WandB
|
168 |
# wandb creates a folder to store logs for training runs
|
169 |
wandb
|
|
|
|
|
|
|
|
|
|
|
|
167 |
# WandB
|
168 |
# wandb creates a folder to store logs for training runs
|
169 |
wandb
|
170 |
+
|
171 |
+
# Runs
|
172 |
+
lora-out/*
|
173 |
+
qlora-out/*
|
174 |
+
mlruns/*
|
README.md
CHANGED
@@ -99,7 +99,23 @@ Get started with Axolotl in just a few steps! This quickstart guide will walk yo
|
|
99 |
|
100 |
**Requirements**: Python >=3.9 and Pytorch >=2.1.1.
|
101 |
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
### Usage
|
105 |
```bash
|
|
|
99 |
|
100 |
**Requirements**: Python >=3.9 and Pytorch >=2.1.1.
|
101 |
|
102 |
+
### For developers
|
103 |
+
```bash
|
104 |
+
git clone https://github.com/OpenAccess-AI-Collective/axolotl
|
105 |
+
cd axolotl
|
106 |
+
|
107 |
+
pip3 install packaging
|
108 |
+
```
|
109 |
+
|
110 |
+
General case:
|
111 |
+
```
|
112 |
+
pip3 install -e '.[flash-attn,deepspeed]'
|
113 |
+
```
|
114 |
+
|
115 |
+
Mac: see https://github.com/OpenAccess-AI-Collective/axolotl/blob/13199f678b9aab39e92961323bdbce3234ee4b2b/docs/mac.md
|
116 |
+
```
|
117 |
+
pip3 install -e '.'
|
118 |
+
```
|
119 |
|
120 |
### Usage
|
121 |
```bash
|
docs/mac.md
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Mac M series support
|
2 |
+
|
3 |
+
Currently Axolotl on Mac is partially usable, many of the dependencies of Axolotl including Pytorch do not support MPS or have incomplete support.
|
4 |
+
|
5 |
+
Current support:
|
6 |
+
- [x] Support for all models
|
7 |
+
- [x] Full training of models
|
8 |
+
- [x] LoRA training
|
9 |
+
- [x] Sample packing
|
10 |
+
- [ ] FP16 and BF16 (awaiting AMP support for MPS in Pytorch)
|
11 |
+
- [ ] Tri-dao's flash-attn (until it is supported use spd_attention as an alternative)
|
12 |
+
- [ ] xformers
|
13 |
+
- [ ] bitsandbytes (meaning no 4/8 bits loading and bnb optimizers)
|
14 |
+
- [ ] qlora
|
15 |
+
- [ ] DeepSpeed
|
16 |
+
|
17 |
+
Untested:
|
18 |
+
- FSDP
|
examples/mistral/lora-mps.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: mistralai/Mistral-7B-v0.1
|
2 |
+
model_type: MistralForCausalLM
|
3 |
+
tokenizer_type: LlamaTokenizer
|
4 |
+
|
5 |
+
load_in_8bit: false
|
6 |
+
load_in_4bit: false
|
7 |
+
strict: false
|
8 |
+
|
9 |
+
datasets:
|
10 |
+
- path: mhenrichsen/alpaca_2k_test
|
11 |
+
type: alpaca
|
12 |
+
dataset_prepared_path: last_run_prepared
|
13 |
+
val_set_size: 0
|
14 |
+
output_dir: ./lora-out
|
15 |
+
eval_sample_packing: false
|
16 |
+
|
17 |
+
adapter: lora
|
18 |
+
lora_model_dir:
|
19 |
+
|
20 |
+
sequence_len: 4096
|
21 |
+
sample_packing: true
|
22 |
+
pad_to_sequence_len: true
|
23 |
+
|
24 |
+
lora_r: 32
|
25 |
+
lora_alpha: 16
|
26 |
+
lora_dropout: 0.05
|
27 |
+
lora_target_linear: true
|
28 |
+
lora_fan_in_fan_out:
|
29 |
+
lora_target_modules:
|
30 |
+
- gate_proj
|
31 |
+
- down_proj
|
32 |
+
- up_proj
|
33 |
+
- q_proj
|
34 |
+
- v_proj
|
35 |
+
- k_proj
|
36 |
+
- o_proj
|
37 |
+
|
38 |
+
wandb_project:
|
39 |
+
wandb_entity:
|
40 |
+
wandb_watch:
|
41 |
+
wandb_name:
|
42 |
+
wandb_log_model:
|
43 |
+
|
44 |
+
gradient_accumulation_steps: 8
|
45 |
+
micro_batch_size: 1
|
46 |
+
num_epochs: 2
|
47 |
+
optimizer: adamw_torch
|
48 |
+
lr_scheduler: cosine
|
49 |
+
learning_rate: 0.0002
|
50 |
+
|
51 |
+
train_on_inputs: false
|
52 |
+
group_by_length: false
|
53 |
+
bf16: auto
|
54 |
+
fp16: false
|
55 |
+
tf32: true
|
56 |
+
|
57 |
+
gradient_checkpointing: true
|
58 |
+
early_stopping_patience:
|
59 |
+
resume_from_checkpoint:
|
60 |
+
local_rank:
|
61 |
+
logging_steps: 1
|
62 |
+
xformers_attention:
|
63 |
+
flash_attention: false
|
64 |
+
sdp_attention: true
|
65 |
+
|
66 |
+
loss_watchdog_threshold: 5.0
|
67 |
+
loss_watchdog_patience: 3
|
68 |
+
|
69 |
+
warmup_steps: 10
|
70 |
+
evals_per_epoch: 4
|
71 |
+
eval_table_size:
|
72 |
+
eval_table_max_new_tokens: 128
|
73 |
+
saves_per_epoch: 1
|
74 |
+
debug:
|
75 |
+
deepspeed:
|
76 |
+
weight_decay: 0.0
|
77 |
+
fsdp:
|
78 |
+
fsdp_config:
|
79 |
+
special_tokens:
|