Nanobit commited on
Commit
c6b01e0
Β·
unverified Β·
1 Parent(s): cc3cebf

chore: update readme to be more clear (#1326) [skip ci]

Browse files
Files changed (1) hide show
  1. README.md +87 -64
README.md CHANGED
@@ -22,7 +22,7 @@ Features:
22
  - [Introduction](#axolotl)
23
  - [Supported Features](#axolotl-supports)
24
  - [Quickstart](#quickstart-)
25
- - [Installation](#installation)
26
  - [Docker](#docker)
27
  - [Conda/Pip venv](#condapip-venv)
28
  - [Cloud GPU](#cloud-gpu) - Latitude.sh, RunPod
@@ -87,25 +87,20 @@ Features:
87
  | phi | βœ… | βœ… | βœ… | ❓ | ❓ | ❓ | ❓ |
88
  | RWKV | βœ… | ❓ | ❓ | ❓ | ❓ | ❓ | ❓ |
89
  | Qwen | βœ… | βœ… | βœ… | ❓ | ❓ | ❓ | ❓ |
 
90
 
 
 
 
91
 
92
  ## Quickstart ⚑
93
 
94
  Get started with Axolotl in just a few steps! This quickstart guide will walk you through setting up and running a basic fine-tuning task.
95
 
96
- **Requirements**: Python >=3.9 and Pytorch >=2.0.
97
 
98
  `pip3 install "axolotl[flash-attn,deepspeed] @ git+https://github.com/OpenAccess-AI-Collective/axolotl"`
99
 
100
- ### For developers
101
- ```bash
102
- git clone https://github.com/OpenAccess-AI-Collective/axolotl
103
- cd axolotl
104
-
105
- pip3 install packaging
106
- pip3 install -e '.[flash-attn,deepspeed]'
107
- ```
108
-
109
  ### Usage
110
  ```bash
111
  # preprocess datasets - optional but recommended
@@ -127,13 +122,14 @@ accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
127
  accelerate launch -m axolotl.cli.train https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/examples/openllama-3b/lora.yml
128
  ```
129
 
130
- ## Installation
131
 
132
  ### Environment
133
 
134
  #### Docker
 
135
  ```bash
136
- docker run --gpus '"all"' --rm -it winglian/axolotl:main-py3.10-cu118-2.0.1
137
  ```
138
 
139
  Or run on the current files for development:
@@ -152,7 +148,7 @@ accelerate launch -m axolotl.cli.train https://raw.githubusercontent.com/OpenAcc
152
  A more powerful Docker command to run would be this:
153
 
154
  ```bash
155
- docker run --privileged --gpus '"all"' --shm-size 10g --rm -it --name axolotl --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --mount type=bind,src="${PWD}",target=/workspace/axolotl -v ${HOME}/.cache/huggingface:/root/.cache/huggingface winglian/axolotl:main-py3.10-cu118-2.0.1
156
  ```
157
 
158
  It additionally:
@@ -242,15 +238,18 @@ Please use WSL or Docker!
242
 
243
  #### Launching on public clouds via SkyPilot
244
  To launch on GPU instances (both on-demand and spot instances) on 7+ clouds (GCP, AWS, Azure, OCI, and more), you can use [SkyPilot](https://skypilot.readthedocs.io/en/latest/index.html):
 
245
  ```bash
246
  pip install "skypilot-nightly[gcp,aws,azure,oci,lambda,kubernetes,ibm,scp]" # choose your clouds
247
  sky check
248
  ```
 
249
  Get the [example YAMLs](https://github.com/skypilot-org/skypilot/tree/master/llm/axolotl) of using Axolotl to finetune `mistralai/Mistral-7B-v0.1`:
250
  ```
251
  git clone https://github.com/skypilot-org/skypilot.git
252
  cd skypilot/llm/axolotl
253
  ```
 
254
  Use one command to launch:
255
  ```bash
256
  # On-demand
@@ -260,32 +259,33 @@ HF_TOKEN=xx sky launch axolotl.yaml --env HF_TOKEN
260
  HF_TOKEN=xx BUCKET=<unique-name> sky spot launch axolotl-spot.yaml --env HF_TOKEN --env BUCKET
261
  ```
262
 
263
-
264
  ### Dataset
265
 
266
  Axolotl supports a variety of dataset formats. Below are some of the formats you can use.
267
  Have dataset(s) in one of the following format (JSONL recommended):
268
 
269
- - `alpaca`: instruction; input(optional)
270
- ```json
271
- {"instruction": "...", "input": "...", "output": "..."}
272
- ```
273
- - `sharegpt`: conversations where `from` is `human`/`gpt`. (optional: `system` to override default system prompt)
274
- ```json
275
- {"conversations": [{"from": "...", "value": "..."}]}
276
- ```
277
- - `llama-2`: the json is the same format as `sharegpt` above, with the following config (see the [config section](#config) for more details)
278
- ```yml
279
- datasets:
280
- - path: <your-path>
281
- type: sharegpt
282
- conversation: llama-2
283
- ```
284
  - `completion`: raw corpus
285
  ```json
286
  {"text": "..."}
287
  ```
288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
  <details>
290
 
291
  <summary>See other formats</summary>
@@ -362,14 +362,28 @@ Have dataset(s) in one of the following format (JSONL recommended):
362
  ```json
363
  {"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
364
  ```
365
- - `pygmalion`: pygmalion
366
- ```json
367
- {"conversations": [{"role": "...", "value": "..."}]}
368
- ```
369
  - `metharme`: instruction, adds additional eos tokens
370
  ```json
371
  {"prompt": "...", "generation": "..."}
372
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373
  - `sharegpt.load_role`: conversations where `role` is used instead of `from`
374
  ```json
375
  {"conversations": [{"role": "...", "value": "..."}]}
@@ -385,6 +399,8 @@ Have dataset(s) in one of the following format (JSONL recommended):
385
 
386
  </details>
387
 
 
 
388
  #### How to add custom prompts
389
 
390
  For a dataset that is preprocessed for instruction purposes:
@@ -406,12 +422,16 @@ datasets:
406
  format: "[INST] {instruction} [/INST]"
407
  no_input_format: "[INST] {instruction} [/INST]"
408
  ```
 
409
 
410
  #### How to use your custom pretokenized dataset
411
 
412
  - Do not pass a `type:`
413
  - Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels`
414
 
 
 
 
415
 
416
  ### Config
417
 
@@ -425,22 +445,18 @@ See [examples](examples) for quick start. It is recommended to duplicate and mod
425
 
426
  - dataset
427
  ```yaml
428
- sequence_len: 2048 # max token length for prompt
429
-
430
- # huggingface repo
431
  datasets:
 
432
  - path: vicgalle/alpaca-gpt4
433
- type: alpaca # format from earlier
434
 
435
- # huggingface repo with specific configuration/subset
436
- datasets:
437
  - path: EleutherAI/pile
438
  name: enron_emails
439
  type: completion # format from earlier
440
  field: text # Optional[str] default: text, field to use for completion data
441
 
442
- # huggingface repo with multiple named configurations/subsets
443
- datasets:
444
  - path: bigcode/commitpackft
445
  name:
446
  - ruby
@@ -448,34 +464,29 @@ See [examples](examples) for quick start. It is recommended to duplicate and mod
448
  - typescript
449
  type: ... # unimplemented custom format
450
 
451
- # fastchat conversation
452
- # See 'conversation' options: https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
453
- datasets:
454
  - path: ...
455
  type: sharegpt
456
- conversation: chatml
457
 
458
- # local
459
- datasets:
460
  - path: data.jsonl # or json
461
  ds_type: json # see other options below
462
  type: alpaca
463
 
464
- # dataset with splits, but no train split
465
- dataset:
466
  - path: knowrohit07/know_sql
467
  type: context_qa.load_v2
468
  train_on_split: validation
469
 
470
- # loading from s3 or gcs
471
- # s3 creds will be loaded from the system default and gcs only supports public access
472
- dataset:
473
  - path: s3://path_to_ds # Accepts folder with arrow/parquet or file path like above. Supports s3, gcs.
474
  ...
475
 
476
- # Loading Data From a Public URL
477
- # - The file format is `json` (which includes `jsonl`) by default. For different formats, adjust the `ds_type` option accordingly.
478
- dataset:
479
  - path: https://some.url.com/yourdata.jsonl # The URL should be a direct link to the file you wish to load. URLs must use HTTPS protocol, not HTTP.
480
  ds_type: json # this is the default, see other options below.
481
  ```
@@ -484,9 +495,11 @@ See [examples](examples) for quick start. It is recommended to duplicate and mod
484
  ```yaml
485
  load_in_4bit: true
486
  load_in_8bit: true
 
487
  bf16: auto # require >=ampere, auto will detect if your GPU supports this and choose automatically.
488
  fp16: # leave empty to use fp16 when bf16 is 'auto'. set to false if you want to fallback to fp32
489
  tf32: true # require >=ampere
 
490
  bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision)
491
  float16: true # use instead of fp16 when you don't want AMP
492
  ```
@@ -494,7 +507,7 @@ See [examples](examples) for quick start. It is recommended to duplicate and mod
494
 
495
  - lora
496
  ```yaml
497
- adapter: lora # qlora or leave blank for full finetune
498
  lora_r: 8
499
  lora_alpha: 16
500
  lora_dropout: 0.05
@@ -503,9 +516,9 @@ See [examples](examples) for quick start. It is recommended to duplicate and mod
503
  - v_proj
504
  ```
505
 
506
- <details>
507
 
508
- <summary>All yaml options (click me)</summary>
509
 
510
  ```yaml
511
  # This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
@@ -535,12 +548,13 @@ tokenizer_legacy:
535
  # This is reported to improve training speed on some models
536
  resize_token_embeddings_to_32x:
537
 
 
538
  # Used to identify which the model is based on
539
  is_falcon_derived_model:
540
  is_llama_derived_model:
 
541
  # Please note that if you set this to true, `padding_side` will be set to "left" by default
542
  is_mistral_derived_model:
543
- is_qwen_derived_model:
544
 
545
  # optional overrides to the base model configuration
546
  model_config_overrides:
@@ -633,7 +647,7 @@ test_datasets:
633
  data_files:
634
  - /workspace/data/eval.jsonl
635
 
636
- # use RL training: dpo, ipo, kto_pair
637
  rl:
638
 
639
  # Saves the desired chat template to the tokenizer_config.json for easier inferencing
@@ -653,7 +667,7 @@ dataset_processes: # defaults to os.cpu_count() if not set
653
  # Only needed if cached dataset is taking too much storage
654
  dataset_keep_in_memory:
655
  # push checkpoints to hub
656
- hub_model_id: # repo path to push finetuned model
657
  # how to push checkpoints to hub
658
  # https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
659
  hub_strategy:
@@ -1100,7 +1114,7 @@ Please use `--sample_packing False` if you have it on and receive the error simi
1100
 
1101
  ### Merge LORA to base
1102
 
1103
- The following command will merge your LORA adapater with your base model. You can optionally pass the argument `--lora_model_dir` to specify the directory where your LORA adapter was saved, otherwhise, this will be inferred from `output_dir` in your axolotl config file. The merged model is saved in the sub-directory `{lora_model_dir}/merged`.
1104
 
1105
  ```bash
1106
  python3 -m axolotl.cli.merge_lora your_config.yml --lora_model_dir="./completed-model"
@@ -1161,7 +1175,7 @@ If you decode a prompt constructed by axolotl, you might see spaces between toke
1161
 
1162
  1. Materialize some data using `python -m axolotl.cli.preprocess your_config.yml --debug`, and then decode the first few rows with your model's tokenizer.
1163
  2. During inference, right before you pass a tensor of token ids to your model, decode these tokens back into a string.
1164
- 3. Make sure the inference string from #2 looks **exactly** like the data you fine tuned on from #1, including spaces and new lines. If they aren't the same adjust your inference server accordingly.
1165
  4. As an additional troubleshooting step, you can look at the token ids between 1 and 2 to make sure they are identical.
1166
 
1167
  Having misalignment between your prompts during training and inference can cause models to perform very poorly, so it is worth checking this. See [this blog post](https://hamel.dev/notes/llm/05_tokenizer_gotchas.html) for a concrete example.
@@ -1208,11 +1222,20 @@ PRs are **greatly welcome**!
1208
 
1209
  Please run below to setup env
1210
  ```bash
 
 
 
 
 
 
1211
  pip3 install -r requirements-dev.txt -r requirements-tests.txt
1212
  pre-commit install
1213
 
1214
  # test
1215
  pytest tests/
 
 
 
1216
  ```
1217
 
1218
  Thanks to all of our contributors to date. Help drive open source AI progress forward by contributing to Axolotl.
 
22
  - [Introduction](#axolotl)
23
  - [Supported Features](#axolotl-supports)
24
  - [Quickstart](#quickstart-)
25
+ - [Environment](#environment)
26
  - [Docker](#docker)
27
  - [Conda/Pip venv](#condapip-venv)
28
  - [Cloud GPU](#cloud-gpu) - Latitude.sh, RunPod
 
87
  | phi | βœ… | βœ… | βœ… | ❓ | ❓ | ❓ | ❓ |
88
  | RWKV | βœ… | ❓ | ❓ | ❓ | ❓ | ❓ | ❓ |
89
  | Qwen | βœ… | βœ… | βœ… | ❓ | ❓ | ❓ | ❓ |
90
+ | Gemma | βœ… | βœ… | βœ… | ❓ | ❓ | βœ… | ❓ |
91
 
92
+ βœ…: supported
93
+ ❌: not supported
94
+ ❓: untested
95
 
96
  ## Quickstart ⚑
97
 
98
  Get started with Axolotl in just a few steps! This quickstart guide will walk you through setting up and running a basic fine-tuning task.
99
 
100
+ **Requirements**: Python >=3.9 and Pytorch >=2.1.1.
101
 
102
  `pip3 install "axolotl[flash-attn,deepspeed] @ git+https://github.com/OpenAccess-AI-Collective/axolotl"`
103
 
 
 
 
 
 
 
 
 
 
104
  ### Usage
105
  ```bash
106
  # preprocess datasets - optional but recommended
 
122
  accelerate launch -m axolotl.cli.train https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/examples/openllama-3b/lora.yml
123
  ```
124
 
125
+ ## Advanced Setup
126
 
127
  ### Environment
128
 
129
  #### Docker
130
+
131
  ```bash
132
+ docker run --gpus '"all"' --rm -it winglian/axolotl:main-latest
133
  ```
134
 
135
  Or run on the current files for development:
 
148
  A more powerful Docker command to run would be this:
149
 
150
  ```bash
151
+ docker run --privileged --gpus '"all"' --shm-size 10g --rm -it --name axolotl --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --mount type=bind,src="${PWD}",target=/workspace/axolotl -v ${HOME}/.cache/huggingface:/root/.cache/huggingface winglian/axolotl:main-latest
152
  ```
153
 
154
  It additionally:
 
238
 
239
  #### Launching on public clouds via SkyPilot
240
  To launch on GPU instances (both on-demand and spot instances) on 7+ clouds (GCP, AWS, Azure, OCI, and more), you can use [SkyPilot](https://skypilot.readthedocs.io/en/latest/index.html):
241
+
242
  ```bash
243
  pip install "skypilot-nightly[gcp,aws,azure,oci,lambda,kubernetes,ibm,scp]" # choose your clouds
244
  sky check
245
  ```
246
+
247
  Get the [example YAMLs](https://github.com/skypilot-org/skypilot/tree/master/llm/axolotl) of using Axolotl to finetune `mistralai/Mistral-7B-v0.1`:
248
  ```
249
  git clone https://github.com/skypilot-org/skypilot.git
250
  cd skypilot/llm/axolotl
251
  ```
252
+
253
  Use one command to launch:
254
  ```bash
255
  # On-demand
 
259
  HF_TOKEN=xx BUCKET=<unique-name> sky spot launch axolotl-spot.yaml --env HF_TOKEN --env BUCKET
260
  ```
261
 
 
262
  ### Dataset
263
 
264
  Axolotl supports a variety of dataset formats. Below are some of the formats you can use.
265
  Have dataset(s) in one of the following format (JSONL recommended):
266
 
267
+ #### Pretraining
268
+
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  - `completion`: raw corpus
270
  ```json
271
  {"text": "..."}
272
  ```
273
 
274
+ Note: Axolotl usually loads the entire dataset into memory. This will be challenging for large datasets. Use the following config to enable streaming:
275
+
276
+ ```yaml
277
+ pretraining_dataset: # hf path only
278
+ ```
279
+
280
+ #### Supervised finetuning
281
+
282
+ ##### Instruction
283
+
284
+ - `alpaca`: instruction; input(optional)
285
+ ```json
286
+ {"instruction": "...", "input": "...", "output": "..."}
287
+ ```
288
+
289
  <details>
290
 
291
  <summary>See other formats</summary>
 
362
  ```json
363
  {"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
364
  ```
 
 
 
 
365
  - `metharme`: instruction, adds additional eos tokens
366
  ```json
367
  {"prompt": "...", "generation": "..."}
368
  ```
369
+
370
+ </details>
371
+
372
+ ##### Conversation
373
+
374
+ - `sharegpt`: conversations where `from` is `human`/`gpt`. (optional: first row with role `system` to override default system prompt)
375
+ ```json
376
+ {"conversations": [{"from": "...", "value": "..."}]}
377
+ ```
378
+
379
+ <details>
380
+
381
+ <summary>See other formats</summary>
382
+
383
+ - `pygmalion`: pygmalion
384
+ ```json
385
+ {"conversations": [{"role": "...", "value": "..."}]}
386
+ ```
387
  - `sharegpt.load_role`: conversations where `role` is used instead of `from`
388
  ```json
389
  {"conversations": [{"role": "...", "value": "..."}]}
 
399
 
400
  </details>
401
 
402
+ Note: `type: sharegpt` opens a special config `conversation:` that enables conversions to many Conversation types. See dataset section under [all yaml options](#all-yaml-options).
403
+
404
  #### How to add custom prompts
405
 
406
  For a dataset that is preprocessed for instruction purposes:
 
422
  format: "[INST] {instruction} [/INST]"
423
  no_input_format: "[INST] {instruction} [/INST]"
424
  ```
425
+ See full config options under [all yaml options](#all-yaml-options).
426
 
427
  #### How to use your custom pretokenized dataset
428
 
429
  - Do not pass a `type:`
430
  - Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels`
431
 
432
+ ```yaml
433
+ - path: ...
434
+ ```
435
 
436
  ### Config
437
 
 
445
 
446
  - dataset
447
  ```yaml
 
 
 
448
  datasets:
449
+ # huggingface repo
450
  - path: vicgalle/alpaca-gpt4
451
+ type: alpaca
452
 
453
+ # huggingface repo with specific configuration/subset
 
454
  - path: EleutherAI/pile
455
  name: enron_emails
456
  type: completion # format from earlier
457
  field: text # Optional[str] default: text, field to use for completion data
458
 
459
+ # huggingface repo with multiple named configurations/subsets
 
460
  - path: bigcode/commitpackft
461
  name:
462
  - ruby
 
464
  - typescript
465
  type: ... # unimplemented custom format
466
 
467
+ # fastchat conversation
468
+ # See 'conversation' options: https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
 
469
  - path: ...
470
  type: sharegpt
471
+ conversation: chatml # default: vicuna_v1.1
472
 
473
+ # local
 
474
  - path: data.jsonl # or json
475
  ds_type: json # see other options below
476
  type: alpaca
477
 
478
+ # dataset with splits, but no train split
 
479
  - path: knowrohit07/know_sql
480
  type: context_qa.load_v2
481
  train_on_split: validation
482
 
483
+ # loading from s3 or gcs
484
+ # s3 creds will be loaded from the system default and gcs only supports public access
 
485
  - path: s3://path_to_ds # Accepts folder with arrow/parquet or file path like above. Supports s3, gcs.
486
  ...
487
 
488
+ # Loading Data From a Public URL
489
+ # - The file format is `json` (which includes `jsonl`) by default. For different formats, adjust the `ds_type` option accordingly.
 
490
  - path: https://some.url.com/yourdata.jsonl # The URL should be a direct link to the file you wish to load. URLs must use HTTPS protocol, not HTTP.
491
  ds_type: json # this is the default, see other options below.
492
  ```
 
495
  ```yaml
496
  load_in_4bit: true
497
  load_in_8bit: true
498
+
499
  bf16: auto # require >=ampere, auto will detect if your GPU supports this and choose automatically.
500
  fp16: # leave empty to use fp16 when bf16 is 'auto'. set to false if you want to fallback to fp32
501
  tf32: true # require >=ampere
502
+
503
  bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision)
504
  float16: true # use instead of fp16 when you don't want AMP
505
  ```
 
507
 
508
  - lora
509
  ```yaml
510
+ adapter: lora # 'qlora' or leave blank for full finetune
511
  lora_r: 8
512
  lora_alpha: 16
513
  lora_dropout: 0.05
 
516
  - v_proj
517
  ```
518
 
519
+ <details id="all-yaml-options">
520
 
521
+ <summary>All yaml options (click to expand)</summary>
522
 
523
  ```yaml
524
  # This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
 
548
  # This is reported to improve training speed on some models
549
  resize_token_embeddings_to_32x:
550
 
551
+ # (Internal use only)
552
  # Used to identify which the model is based on
553
  is_falcon_derived_model:
554
  is_llama_derived_model:
555
+ is_qwen_derived_model:
556
  # Please note that if you set this to true, `padding_side` will be set to "left" by default
557
  is_mistral_derived_model:
 
558
 
559
  # optional overrides to the base model configuration
560
  model_config_overrides:
 
647
  data_files:
648
  - /workspace/data/eval.jsonl
649
 
650
+ # use RL training: 'dpo', 'ipo', 'kto_pair'
651
  rl:
652
 
653
  # Saves the desired chat template to the tokenizer_config.json for easier inferencing
 
667
  # Only needed if cached dataset is taking too much storage
668
  dataset_keep_in_memory:
669
  # push checkpoints to hub
670
+ hub_model_id: # private repo path to push finetuned model
671
  # how to push checkpoints to hub
672
  # https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
673
  hub_strategy:
 
1114
 
1115
  ### Merge LORA to base
1116
 
1117
+ The following command will merge your LORA adapater with your base model. You can optionally pass the argument `--lora_model_dir` to specify the directory where your LORA adapter was saved, otherwhise, this will be inferred from `output_dir` in your axolotl config file. The merged model is saved in the sub-directory `{lora_model_dir}/merged`.
1118
 
1119
  ```bash
1120
  python3 -m axolotl.cli.merge_lora your_config.yml --lora_model_dir="./completed-model"
 
1175
 
1176
  1. Materialize some data using `python -m axolotl.cli.preprocess your_config.yml --debug`, and then decode the first few rows with your model's tokenizer.
1177
  2. During inference, right before you pass a tensor of token ids to your model, decode these tokens back into a string.
1178
+ 3. Make sure the inference string from #2 looks **exactly** like the data you fine tuned on from #1, including spaces and new lines. If they aren't the same, adjust your inference server accordingly.
1179
  4. As an additional troubleshooting step, you can look at the token ids between 1 and 2 to make sure they are identical.
1180
 
1181
  Having misalignment between your prompts during training and inference can cause models to perform very poorly, so it is worth checking this. See [this blog post](https://hamel.dev/notes/llm/05_tokenizer_gotchas.html) for a concrete example.
 
1222
 
1223
  Please run below to setup env
1224
  ```bash
1225
+ git clone https://github.com/OpenAccess-AI-Collective/axolotl
1226
+ cd axolotl
1227
+
1228
+ pip3 install packaging
1229
+ pip3 install -e '.[flash-attn,deepspeed]'
1230
+
1231
  pip3 install -r requirements-dev.txt -r requirements-tests.txt
1232
  pre-commit install
1233
 
1234
  # test
1235
  pytest tests/
1236
+
1237
+ # optional: run against all files
1238
+ pre-commit run --all-files
1239
  ```
1240
 
1241
  Thanks to all of our contributors to date. Help drive open source AI progress forward by contributing to Axolotl.