File size: 29,612 Bytes
5cb7ea4
 
2495909
 
3a2edc8
 
 
 
 
 
 
 
090c24d
3a2edc8
 
e8c8ea6
 
 
3a2edc8
2495909
 
 
 
 
 
 
 
c6b01e0
77c84e0
 
638c2da
1daecd1
77c84e0
f083aed
f1ebaa0
b33c1d5
5d97e65
2495909
 
 
3d2cd80
2495909
712fd27
86b7d22
00568c1
324d59e
 
e07dcb2
2495909
712fd27
7512c3a
2495909
 
 
 
1496441
2495909
 
 
 
db73b94
 
 
 
2495909
db73b94
 
77c84e0
db73b94
afb31e1
 
db73b94
 
 
2495909
 
 
 
db73b94
5cb7ea4
68b227a
 
 
 
 
bcaa923
68b227a
 
 
 
 
 
 
 
 
 
c6b01e0
e9da4b9
c6b01e0
 
 
e9da4b9
ba9ac72
db73b94
2495909
 
3765747
db73b94
0f6af36
 
 
 
cae608f
0f6af36
 
 
ddf8150
 
b715cd5
 
 
85326bf
861ceca
db73b94
ba9ac72
861ceca
49b967b
738a057
 
 
49b967b
9bca7db
 
 
 
ba9ac72
db73b94
c6b01e0
e9da4b9
04d2813
 
77c84e0
c6b01e0
04d2813
c6b01e0
04d2813
 
84169d1
 
 
 
 
 
2dc4310
629450c
2dc4310
2e71ff0
 
 
 
 
 
 
c6b01e0
2e71ff0
 
 
 
 
 
8a8d1c4
 
2e71ff0
 
 
 
 
77c84e0
3765747
04d2813
bdc4bd7
cf61f14
77c84e0
2b222de
9845c5e
5e5296a
2b222de
85b0be2
 
 
 
 
04d2813
ece0211
501b4d1
ece0211
 
1daecd1
638c2da
ece0211
501b4d1
1daecd1
 
 
 
ff68a95
 
 
 
 
 
2e13cef
3765747
ff68a95
3765747
 
 
ff68a95
 
 
 
 
 
 
 
 
c2b64e4
ff68a95
c2b64e4
ff68a95
c2b64e4
 
ff68a95
919f4ca
ff68a95
 
c2b64e4
ff68a95
 
 
 
 
868c339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c84e0
 
f51c9c5
f083aed
 
 
 
 
 
629450c
b33c1d5
f1ebaa0
 
 
 
b33c1d5
 
c6b01e0
b33c1d5
 
 
 
c6b01e0
b33c1d5
 
 
 
 
c6b01e0
b33c1d5
 
332984d
b33c1d5
 
 
 
 
 
5d97e65
 
 
 
 
 
 
 
 
3319780
5d97e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04d2813
 
86b7d22
04d2813
86b7d22
2097a09
04d2813
 
cc7e800
04d2813
 
 
 
 
68237ea
04d2813
 
 
 
c6b01e0
9e64f42
c6b01e0
46032a1
c6b01e0
8bba642
 
 
f7a2263
9e64f42
c6b01e0
5ac3392
 
 
 
 
 
 
c6b01e0
 
20aa4b5
 
c6b01e0
20aa4b5
c6b01e0
04a42b6
 
 
409ca0f
c6b01e0
409ca0f
 
 
3cc67d2
c6b01e0
 
3cc67d2
 
91cf4ee
c6b01e0
 
b2a4cb4
91cf4ee
04d2813
 
 
 
a9e502e
04d2813
c6b01e0
782b6a4
 
e65c203
c6b01e0
d7635b7
88e17ff
04d2813
68237ea
04d2813
 
 
c6b01e0
04d2813
 
 
 
 
 
 
 
86b7d22
12de7b7
86b7d22
0a472e1
04d2813
0a472e1
04d2813
 
861ceca
0a472e1
 
9bca7db
 
 
e50ab07
 
 
 
 
b31038a
 
 
94d03c8
 
e50ab07
94d03c8
 
e50ab07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d2ac1
e50ab07
 
 
7d9bafc
e50ab07
 
 
cf5ae6b
 
 
 
 
 
 
 
 
 
 
 
8b12468
 
629450c
8b12468
7019509
 
dec66d7
 
7019509
 
 
 
 
 
a1da39c
7019509
 
 
712fd27
 
d25c34c
712fd27
 
 
 
 
 
 
 
 
 
 
 
 
76357dc
04d2813
76357dc
f6ecf14
76357dc
 
04d2813
8552218
 
861ceca
8552218
 
 
861ceca
8552218
c4e4f81
 
861ceca
 
c4e4f81
738a057
 
 
 
0a472e1
11c48c5
 
 
 
bc97f9c
04d2813
c6b01e0
ba9ac72
 
63fb3eb
ba9ac72
 
bdfefaf
88e17ff
 
861ceca
88e17ff
 
bdfefaf
 
ba9ac72
 
629450c
a21935f
2495909
5417824
 
 
 
3c71c8d
5417824
ba9ac72
b0cf397
 
 
 
04a42b6
 
 
2495909
 
 
1377400
 
 
 
e689069
 
 
 
b64f411
cf5ae6b
 
 
5e2d8a4
 
629450c
5e2d8a4
712fd27
 
 
 
 
 
 
 
 
c6b01e0
9135b9e
712fd27
5cde065
712fd27
7512c3a
 
629450c
7512c3a
dfd1885
3f6017d
dfd1885
 
 
e07bd8a
b267d24
 
 
 
 
 
 
 
 
 
5ff547d
 
2495909
 
5ff547d
08b8ba0
5ff547d
 
 
 
 
 
ba9ac72
 
31db0ec
 
 
04d2813
bc97f9c
afb31e1
c2b64e4
afb31e1
b1cc54b
afb31e1
b1cc54b
 
 
c6b01e0
 
 
afb31e1
1496441
411293b
 
 
 
 
 
1496441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638c2da
 
1496441
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
# Axolotl

Axolotl is a tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures.

Features:
- Train various Huggingface models such as llama, pythia, falcon, mpt
- Supports fullfinetune, lora, qlora, relora, and gptq
- Customize configurations using a simple yaml file or CLI overwrite
- Load different dataset formats, use custom formats, or bring your own tokenized datasets
- Integrated with xformer, flash attention, rope scaling, and multipacking
- Works with single GPU or multiple GPUs via FSDP or Deepspeed
- Easily run with Docker locally or on the cloud
- Log results and optionally checkpoints to wandb or mlflow
- And more!

<a href="https://www.phorm.ai/query?projectId=e315ba4a-4e14-421f-ab05-38a1f9076f25">
  <img alt="phorm.ai" src="https://img.shields.io/badge/Phorm-Ask_AI-%23F2777A.svg?&logo=">
</a>

<table>
<tr>
<td>

## Table of Contents
- [Introduction](#axolotl)
- [Supported Features](#axolotl-supports)
- [Quickstart](#quickstart-)
- [Environment](#environment)
  - [Docker](#docker)
  - [Conda/Pip venv](#condapip-venv)
  - [Cloud GPU](#cloud-gpu) - Latitude.sh, JarvisLabs, RunPod
  - [Bare Metal Cloud GPU](#bare-metal-cloud-gpu)
  - [Windows](#windows)
  - [Mac](#mac)
  - [Google Colab](#google-colab)
  - [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot)
  - [Launching on public clouds via dstack](#launching-on-public-clouds-via-dstack)
- [Dataset](#dataset)
- [Config](#config)
  - [Train](#train)
  - [Inference](#inference-playground)
  - [Merge LORA to Base](#merge-lora-to-base)
  - [Special Tokens](#special-tokens)
  - [All Config Options](#all-config-options)
- Advanced Topics
  - [Multipack](./docs/multipack.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
  - [RLHF & DPO](./docs/rlhf.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
  - [Dataset Pre-Processing](./docs/dataset_preprocessing.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
- [Common Errors](#common-errors-)
  - [Tokenization Mismatch b/w Training & Inference](#tokenization-mismatch-bw-inference--training)
- [Debugging Axolotl](#debugging-axolotl)
- [Need Help?](#need-help-)
- [Badge](#badge-)
- [Community Showcase](#community-showcase)
- [Contributing](#contributing-)
- [Sponsors](#sponsors-)

</td>
<td>

<div align="center">
  <img src="image/axolotl.png" alt="axolotl" width="160">
  <div>
    <p>
      <b>Axolotl provides a unified repository for fine-tuning <br />a variety of AI models with ease</b>
    </p>
    <p>
      Go ahead and Axolotl questions!!
    </p>
    <img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit">
    <img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main">
  </div>
</div>

</td>
</tr>
</table>

## Axolotl supports

|             | fp16/fp32 | lora | qlora | gptq | gptq w/flash attn | flash attn | xformers attn |
|-------------|:----------|:-----|-------|------|-------------------|------------|--------------|
| llama       | βœ…         | βœ…    | βœ…     | βœ…             | βœ…                 | βœ…          | βœ…            |
| Mistral     | βœ…         | βœ…    | βœ…     | βœ…             | βœ…                 | βœ…          | βœ…            |
| Mixtral-MoE | βœ…         | βœ…    | βœ…     | ❓             | ❓                 | ❓          | ❓            |
| Mixtral8X22 | βœ…         | βœ…    | βœ…     | ❓             | ❓                 | ❓          | ❓            |
| Pythia      | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| cerebras    | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| btlm        | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| mpt         | βœ…         | ❌    | ❓     | ❌             | ❌                 | ❌          | ❓            |
| falcon      | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| gpt-j       | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❓          | ❓            |
| XGen        | βœ…         | ❓    | βœ…     | ❓             | ❓                 | ❓          | βœ…            |
| phi         | βœ…         | βœ…    | βœ…     | ❓             | ❓                 | ❓          | ❓            |
| RWKV        | βœ…         | ❓    | ❓     | ❓             | ❓                 | ❓          | ❓            |
| Qwen        | βœ…         | βœ…    | βœ…     | ❓             | ❓                 | ❓          | ❓            |
| Gemma       | βœ…         | βœ…    | βœ…     | ❓             | ❓                 | βœ…          | ❓            |

βœ…: supported
❌: not supported
❓: untested

## Quickstart ⚑

Get started with Axolotl in just a few steps! This quickstart guide will walk you through setting up and running a basic fine-tuning task.

**Requirements**: Python >=3.10 and Pytorch >=2.1.1.

```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
cd axolotl

pip3 install packaging ninja
pip3 install -e '.[flash-attn,deepspeed]'
```

### Usage
```bash
# preprocess datasets - optional but recommended
CUDA_VISIBLE_DEVICES="" python -m axolotl.cli.preprocess examples/openllama-3b/lora.yml

# finetune lora
accelerate launch -m axolotl.cli.train examples/openllama-3b/lora.yml

# inference
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
    --lora_model_dir="./outputs/lora-out"

# gradio
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
    --lora_model_dir="./outputs/lora-out" --gradio

# remote yaml files - the yaml config can be hosted on a public URL
# Note: the yaml config must directly link to the **raw** yaml
accelerate launch -m axolotl.cli.train https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/examples/openllama-3b/lora.yml
```

## Advanced Setup

### Environment

#### Docker

  ```bash
  docker run --gpus '"all"' --rm -it winglian/axolotl:main-latest
  ```

  Or run on the current files for development:

  ```sh
  docker compose up -d
  ```

>[!Tip]
> If you want to debug axolotl or prefer to use Docker as your development environment, see the [debugging guide's section on Docker](docs/debugging.qmd#debugging-with-docker).

  <details>

  <summary>Docker advanced</summary>

  A more powerful Docker command to run would be this:

  ```bash
docker run --privileged --gpus '"all"' --shm-size 10g --rm -it --name axolotl --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --mount type=bind,src="${PWD}",target=/workspace/axolotl -v ${HOME}/.cache/huggingface:/root/.cache/huggingface winglian/axolotl:main-latest
  ```

  It additionally:
  * Prevents memory issues when running e.g. deepspeed (e.g. you could hit SIGBUS/signal 7 error) through `--ipc` and `--ulimit` args.
  * Persists the downloaded HF data (models etc.) and your modifications to axolotl code through `--mount`/`-v` args.
  * The `--name` argument simply makes it easier to refer to the container in vscode (`Dev Containers: Attach to Running Container...`) or in your terminal.
  * The `--privileged` flag gives all capabilities to the container.
  * The `--shm-size 10g` argument increases the shared memory size. Use this if you see `exitcode: -7` errors using deepspeed.

  [More information on nvidia website](https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html#setincshmem)

  </details>

#### Conda/Pip venv
  1. Install python >=**3.10**

  2. Install pytorch stable https://pytorch.org/get-started/locally/

  3. Install Axolotl along with python dependencies
        ```bash
        pip3 install packaging
        pip3 install -e '.[flash-attn,deepspeed]'
        ```
  4. (Optional) Login to Huggingface to use gated models/datasets.
        ```bash
        huggingface-cli login
        ```
        Get the token at huggingface.co/settings/tokens

#### Cloud GPU

For cloud GPU providers that support docker images, use [`winglian/axolotl-cloud:main-latest`](https://hub.docker.com/r/winglian/axolotl-cloud/tags)

- on Latitude.sh use this [direct link](https://latitude.sh/blueprint/989e0e79-3bf6-41ea-a46b-1f246e309d5c)
- on JarvisLabs.ai use this [direct link](https://jarvislabs.ai/templates/axolotl)
- on RunPod use this [direct link](https://runpod.io/gsc?template=v2ickqhz9s&ref=6i7fkpdz)

#### Bare Metal Cloud GPU

##### LambdaLabs

  <details>

  <summary>Click to Expand</summary>

  1. Install python
  ```bash
  sudo apt update
  sudo apt install -y python3.10

  sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1
  sudo update-alternatives --config python # pick 3.10 if given option
  python -V # should be 3.10

  ```

  2. Install pip
  ```bash
  wget https://bootstrap.pypa.io/get-pip.py
  python get-pip.py
  ```

  3. Install Pytorch https://pytorch.org/get-started/locally/

  4. Follow instructions on quickstart.

  5. Run
  ```bash
  pip3 install protobuf==3.20.3
  pip3 install -U --ignore-installed requests Pillow psutil scipy
  ```

  6. Set path
  ```bash
  export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
  ```
  </details>

##### GCP

<details>

<summary>Click to Expand</summary>

Use a Deeplearning linux OS with cuda and pytorch installed. Then follow instructions on quickstart.

Make sure to run the below to uninstall xla.
```bash
pip uninstall -y torch_xla[tpu]
```

</details>

#### Windows
Please use WSL or Docker!

#### Mac

Use the below instead of the install method in QuickStart.
```
pip3 install -e '.'
```
More info: [mac.md](/docs/mac.qmd)

#### Google Colab

Please use this example [notebook](examples/colab-notebooks/colab-axolotl-example.ipynb).

#### Launching on public clouds via SkyPilot
To launch on GPU instances (both on-demand and spot instances) on 7+ clouds (GCP, AWS, Azure, OCI, and more), you can use [SkyPilot](https://skypilot.readthedocs.io/en/latest/index.html):

```bash
pip install "skypilot-nightly[gcp,aws,azure,oci,lambda,kubernetes,ibm,scp]"  # choose your clouds
sky check
```

Get the [example YAMLs](https://github.com/skypilot-org/skypilot/tree/master/llm/axolotl) of using Axolotl to finetune `mistralai/Mistral-7B-v0.1`:
```
git clone https://github.com/skypilot-org/skypilot.git
cd skypilot/llm/axolotl
```

Use one command to launch:
```bash
# On-demand
HF_TOKEN=xx sky launch axolotl.yaml --env HF_TOKEN

# Managed spot (auto-recovery on preemption)
HF_TOKEN=xx BUCKET=<unique-name> sky spot launch axolotl-spot.yaml --env HF_TOKEN --env BUCKET
```

#### Launching on public clouds via dstack
To launch on GPU instance (both on-demand and spot instances) on public clouds (GCP, AWS, Azure, Lambda Labs, TensorDock, Vast.ai, and CUDO), you can use [dstack](https://dstack.ai/).

Write a job description in YAML as below:

```yaml
# dstack.yaml
type: task

image: winglian/axolotl-cloud:main-20240429-py3.11-cu121-2.2.2

env:
  - HUGGING_FACE_HUB_TOKEN
  - WANDB_API_KEY

commands:
  - accelerate launch -m axolotl.cli.train config.yaml

ports:
  - 6006

resources:
  gpu:
    memory: 24GB..
    count: 2
```

then, simply run the job with `dstack run` command. Append `--spot` option if you want spot instance. `dstack run` command will show you the instance with cheapest price across multi cloud services:

```bash
pip install dstack
HUGGING_FACE_HUB_TOKEN=xxx WANDB_API_KEY=xxx dstack run . -f dstack.yaml # --spot
```

For further and fine-grained use cases, please refer to the official [dstack documents](https://dstack.ai/docs/) and the detailed description of [axolotl example](https://github.com/dstackai/dstack/tree/master/examples/fine-tuning/axolotl) on the official repository.

### Dataset

Axolotl supports a variety of dataset formats.  It is recommended to use a JSONL.  The schema of the JSONL depends upon the task and the prompt template you wish to use.  Instead of a JSONL, you can also use a HuggingFace dataset with columns for each JSONL field.

See [these docs](https://openaccess-ai-collective.github.io/axolotl/docs/dataset-formats/) for more information on how to use different dataset formats.

### Config

See [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are:

- model
  ```yaml
  base_model: ./llama-7b-hf # local or huggingface repo
  ```
  Note: The code will load the right architecture.

- dataset
  ```yaml
  datasets:
      # huggingface repo
    - path: vicgalle/alpaca-gpt4
      type: alpaca

      # huggingface repo with specific configuration/subset
    - path: EleutherAI/pile
      name: enron_emails
      type: completion # format from earlier
      field: text # Optional[str] default: text, field to use for completion data

      # huggingface repo with multiple named configurations/subsets
    - path: bigcode/commitpackft
      name:
        - ruby
        - python
        - typescript
      type: ... # unimplemented custom format

      # fastchat conversation
      # See 'conversation' options: https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
    - path: ...
      type: sharegpt
      conversation: chatml # default: vicuna_v1.1

      # local
    - path: data.jsonl # or json
      ds_type: json # see other options below
      type: alpaca

      # dataset with splits, but no train split
    - path: knowrohit07/know_sql
      type: context_qa.load_v2
      train_on_split: validation

      # loading from s3 or gcs
      # s3 creds will be loaded from the system default and gcs only supports public access
    - path: s3://path_to_ds # Accepts folder with arrow/parquet or file path like above. Supports s3, gcs.
      ...

      # Loading Data From a Public URL
      # - The file format is `json` (which includes `jsonl`) by default. For different formats, adjust the `ds_type` option accordingly.
    - path: https://some.url.com/yourdata.jsonl # The URL should be a direct link to the file you wish to load. URLs must use HTTPS protocol, not HTTP.
      ds_type: json # this is the default, see other options below.
  ```

- loading
  ```yaml
  load_in_4bit: true
  load_in_8bit: true

  bf16: auto # require >=ampere, auto will detect if your GPU supports this and choose automatically.
  fp16: # leave empty to use fp16 when bf16 is 'auto'. set to false if you want to fallback to fp32
  tf32: true # require >=ampere

  bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision)
  float16: true # use instead of fp16 when you don't want AMP
  ```
  Note: Repo does not do 4-bit quantization.

- lora
  ```yaml
  adapter: lora # 'qlora' or leave blank for full finetune
  lora_r: 8
  lora_alpha: 16
  lora_dropout: 0.05
  lora_target_modules:
    - q_proj
    - v_proj
  ```

#### All Config Options

See [these docs](docs/config.qmd) for all config options.

### Train

Run
```bash
accelerate launch -m axolotl.cli.train your_config.yml
```

> [!TIP]
> You can also reference a config file that is hosted on a public URL, for example `accelerate launch -m axolotl.cli.train https://yourdomain.com/your_config.yml`

#### Preprocess dataset

You can optionally pre-tokenize dataset with the following before finetuning.
This is recommended for large datasets.

- Set `dataset_prepared_path:` to a local folder for saving and loading pre-tokenized dataset.
- (Optional): Set `push_dataset_to_hub: hf_user/repo` to push it to Huggingface.
- (Optional): Use `--debug` to see preprocessed examples.

```bash
python -m axolotl.cli.preprocess your_config.yml
```

#### Multi-GPU

Below are the options available in axolotl for training with multiple GPUs. Note that DeepSpeed
is the recommended multi-GPU option currently because FSDP may experience
[loss instability](https://github.com/huggingface/transformers/issues/26498).

##### DeepSpeed

Deepspeed is an optimization suite for multi-gpu systems allowing you to train much larger models than you
might typically be able to fit into your GPU's VRAM. More information about the various optimization types
for deepspeed is available at https://huggingface.co/docs/accelerate/main/en/usage_guides/deepspeed#what-is-integrated

We provide several default deepspeed JSON configurations for ZeRO stage 1, 2, and 3.

```yaml
deepspeed: deepspeed_configs/zero1.json
```

```shell
accelerate launch -m axolotl.cli.train examples/llama-2/config.yml --deepspeed deepspeed_configs/zero1.json
```

##### FSDP

- llama FSDP
```yaml
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_offload_params: true
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
```

##### FSDP + QLoRA

Axolotl supports training with FSDP and QLoRA, see [these docs](docs/fsdp_qlora.qmd) for more information.

##### Weights & Biases Logging

Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.

- wandb options
```yaml
wandb_mode:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
```

##### Special Tokens

It is important to have special tokens like delimiters, end-of-sequence, beginning-of-sequence in your tokenizer's vocabulary.  This will help you avoid tokenization issues and help your model train better.  You can do this in axolotl like this:

```yml
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
tokens: # these are delimiters
  - "<|im_start|>"
  - "<|im_end|>"
```

When you include these tokens in your axolotl config, axolotl adds these tokens to the tokenizer's vocabulary.

### Inference Playground

Axolotl allows you to load your model in an interactive terminal playground for quick experimentation.
The config file is the same config file used for training.

Pass the appropriate flag to the inference command, depending upon what kind of model was trained:

- Pretrained LORA:
  ```bash
  python -m axolotl.cli.inference examples/your_config.yml --lora_model_dir="./lora-output-dir"
  ```
- Full weights finetune:
  ```bash
  python -m axolotl.cli.inference examples/your_config.yml --base_model="./completed-model"
  ```
- Full weights finetune w/ a prompt from a text file:
  ```bash
  cat /tmp/prompt.txt | python -m axolotl.cli.inference examples/your_config.yml \
    --base_model="./completed-model" --prompter=None --load_in_8bit=True
  ```
-- With gradio hosting
  ```bash
  python -m axolotl.cli.inference examples/your_config.yml --gradio
  ```

Please use `--sample_packing False` if you have it on and receive the error similar to below:

> RuntimeError: stack expects each tensor to be equal size, but got [1, 32, 1, 128] at entry 0 and [1, 32, 8, 128] at entry 1

### Merge LORA to base

The following command will merge your LORA adapater with your base model. You can optionally pass the argument `--lora_model_dir` to specify the directory where your LORA adapter was saved, otherwhise, this will be inferred from `output_dir` in your axolotl config file.  The merged model is saved in the sub-directory `{lora_model_dir}/merged`.

```bash
python3 -m axolotl.cli.merge_lora your_config.yml --lora_model_dir="./completed-model"
```

You may need to use the `gpu_memory_limit` and/or `lora_on_cpu` config options to avoid running out of memory. If you still run out of CUDA memory, you can try to merge in system RAM with

```bash
CUDA_VISIBLE_DEVICES="" python3 -m axolotl.cli.merge_lora ...
```

although this will be very slow, and using the config options above are recommended instead.

## Common Errors 🧰

See also the [FAQ's](./docs/faq.qmd) and [debugging guide](docs/debugging.qmd).

> If you encounter a 'Cuda out of memory' error, it means your GPU ran out of memory during the training process. Here's how to resolve it:

Please reduce any below
  - `micro_batch_size`
  - `eval_batch_size`
  - `gradient_accumulation_steps`
  - `sequence_len`

If it does not help, try running without deepspeed and without accelerate (replace "accelerate launch" with "python") in the command.

Using adamw_bnb_8bit might also save you some memory.

> `failed (exitcode: -9)`

Usually means your system has run out of system memory.
Similarly, you should consider reducing the same settings as when you run out of VRAM.
Additionally, look into upgrading your system RAM which should be simpler than GPU upgrades.

> RuntimeError: expected scalar type Float but found Half

Try set `fp16: true`

> NotImplementedError: No operator found for `memory_efficient_attention_forward` ...

Try to turn off xformers.

> accelerate config missing

It's safe to ignore it.

> NCCL Timeouts during training

See the [NCCL](docs/nccl.qmd) guide.


### Tokenization Mismatch b/w Inference & Training

For many formats, Axolotl constructs prompts by concatenating token ids _after_ tokenizing strings.  The reason for concatenating token ids rather than operating on strings is to maintain precise accounting for attention masks.

If you decode a prompt constructed by axolotl, you might see spaces between tokens (or lack thereof) that you do not expect, especially around delimiters and special tokens.  When you are starting out with a new format, you should always do the following:

1. Materialize some data using `python -m axolotl.cli.preprocess your_config.yml --debug`, and then decode the first few rows with your model's tokenizer.
2. During inference, right before you pass a tensor of token ids to your model, decode these tokens back into a string.
3. Make sure the inference string from #2 looks **exactly** like the data you fine tuned on from #1, including spaces and new lines.  If they aren't the same, adjust your inference server accordingly.
4. As an additional troubleshooting step, you can look at the token ids between 1 and 2 to make sure they are identical.

Having misalignment between your prompts during training and inference can cause models to perform very poorly, so it is worth checking this.  See [this blog post](https://hamel.dev/notes/llm/finetuning/05_tokenizer_gotchas.html) for a concrete example.

## Debugging Axolotl

See [this debugging guide](docs/debugging.qmd) for tips on debugging Axolotl, along with an example configuration for debugging with VSCode.

## Need help? πŸ™‹

Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we our community members can help you.

Need dedicated support? Please contact us at [βœ‰οΈ[email protected]](mailto:[email protected]) for dedicated support options.

## Badge ❀🏷️

Building something cool with Axolotl? Consider adding a badge to your model card.

```markdown
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
```

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

## Community Showcase

Check out some of the projects and models that have been built using Axolotl! Have a model you'd like to add to our Community Showcase? Open a PR with your model.

Open Access AI Collective
- [Minotaur 13b](https://huggingface.co/openaccess-ai-collective/minotaur-13b-fixed)
- [Manticore 13b](https://huggingface.co/openaccess-ai-collective/manticore-13b)
- [Hippogriff 30b](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat)

PocketDoc Labs
- [Dan's PersonalityEngine 13b LoRA](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA)

## Contributing 🀝

Please read the [contributing guide](./.github/CONTRIBUTING.md)

Bugs? Please check the [open issues](https://github.com/OpenAccess-AI-Collective/axolotl/issues/bug) else create a new Issue.

PRs are **greatly welcome**!

Please run the quickstart instructions followed by the below to setup env:
```bash
pip3 install -r requirements-dev.txt -r requirements-tests.txt
pre-commit install

# test
pytest tests/

# optional: run against all files
pre-commit run --all-files
```

Thanks to all of our contributors to date. Help drive open source AI progress forward by contributing to Axolotl.

<a href="https://github.com/openaccess-ai-collective/axolotl/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=openaccess-ai-collective/axolotl" alt="contributor chart by https://contrib.rocks"/>
</a>

## Sponsors 🀝❀

OpenAccess AI Collective is run by volunteer contributors such as [winglian](https://github.com/winglian),
[NanoCode012](https://github.com/NanoCode012), [tmm1](https://github.com/tmm1),
[mhenrichsen](https://github.com/mhenrichsen), [casper-hansen](https://github.com/casper-hansen),
[hamelsmu](https://github.com/hamelsmu) and many more who help us accelerate forward by fixing bugs, answering
community questions and implementing new features. Axolotl needs donations from sponsors for the compute needed to
run our unit & integration tests, troubleshooting community issues, and providing bounties. If you love axolotl,
consider sponsoring the project via [GitHub Sponsors](https://github.com/sponsors/OpenAccess-AI-Collective),
[Ko-fi](https://ko-fi.com/axolotl_ai) or reach out directly to
[[email protected]](mailto:[email protected]).

---

#### πŸ’Ž Diamond Sponsors - [Contact directly](mailto:[email protected])

---

#### πŸ₯‡ Gold Sponsors - $5000/mo

---

#### πŸ₯ˆ Silver Sponsors - $1000/mo

---

#### πŸ₯‰ Bronze Sponsors - $500/mo

 - [JarvisLabs.ai](https://jarvislabs.ai)

---