youval's picture
Update model card (#4)
36f4e94 verified
metadata
language:
  - de
  - en
  - es
  - fr
  - it
  - ja
  - nl
  - pt
  - zh

Model Card for passage-ranker.mango

This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is used to order search results.

Model name: passage-ranker.mango

Supported Languages

The model was trained and tested in the following languages:

  • Chinese (simplified)
  • Dutch
  • English
  • French
  • German
  • Italian
  • Japanese
  • Portuguese
  • Spanish

Besides the aforementioned languages, basic support can be expected for additional 93 languages that were used during the pretraining of the base model (see list of languages).

Scores

Metric Value
Relevance (NDCG@10) 0.480

Note that the relevance score is computed as an average over 14 retrieval datasets (see details below).

Inference Times

GPU Quantization type Batch size 1 Batch size 32
NVIDIA A10 FP16 2 ms 28 ms
NVIDIA A10 FP32 4 ms 82 ms
NVIDIA T4 FP16 3 ms 65 ms
NVIDIA T4 FP32 14 ms 369 ms
NVIDIA L4 FP16 3 ms 38 ms
NVIDIA L4 FP32 5 ms 123 ms

Gpu Memory usage

Quantization type Memory
FP16 850 MiB
FP32 1200 MiB

Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which can be around 0.5 to 1 GiB depending on the used GPU.

Requirements

  • Minimal Sinequa version: 11.10.0
  • Minimal Sinequa version for using FP16 models and GPUs with CUDA compute capability of 8.9+ (like NVIDIA L4): 11.11.0
  • Cuda compute capability: above 5.0 (above 6.0 for FP16 use)

Model Details

Overview

Training Data

Evaluation Metrics

To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the BEIR benchmark. Note that all these datasets are in English.

Dataset NDCG@10
Average 0.480
Arguana 0.537
CLIMATE-FEVER 0.241
DBPedia Entity 0.371
FEVER 0.777
FiQA-2018 0.327
HotpotQA 0.696
MS MARCO 0.414
NFCorpus 0.332
NQ 0.484
Quora 0.768
SCIDOCS 0.143
SciFact 0.648
TREC-COVID 0.673
Webis-Touche-2020 0.310

We evaluated the model on the datasets of the MIRACL benchmark to test its multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics for the existing languages.

Language NDCG@10
Chinese (simplified) 0.463
French 0.447
German 0.415
Japanese 0.526
Spanish 0.485