Sinequa

company
Verified
Activity Feed

AI & ML interests

AI enabled Enterprise Search and Assistants

Recent Activity

About Sinequa

Sinequa provides an Enterprise Search solution that lets you search through your company's internal documents. It uses Neural Search to provide the most relevant content for your search requests.

Neural Search Models

Sinequa Search uses a technology called Neural Search. Neural Search is a hybrid search solution based on both Keyword Search and Vector Search. This search workflow implies two types of models for which we deliver various versions here.

The two collections below bring together the recommended model combinations for:

Vectorizer

Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in our vector index and the query vector is used at query time to look up relevant passages in the index.

Here is an overview of the models we deliver publicly:

Model Languages Relevance Inference Time GPU Memory
vectorizer-v1-S-en en 0.456 52 ms 330 MiB
vectorizer-v1-S-multilingual de, en, es, fr 0.448 51 ms 580 MiB
vectorizer.vanilla en 0.639 53 ms 330 MiB
vectorizer.raspberry de, en, es, fr, it, ja, nl, pt, zs 0.613 52 ms 610 MiB
vectorizer.hazelnut de, en, es, fr, it, ja, nl, pl, pt, zs 0.590 52 ms 610 MiB
vectorizer.guava de, en, es, fr, it, ja, nl, pl, pt, zh-trad, zs 0.616 52 ms 610 MiB

Passage Ranker

Passage Rankers are models which produce a relevance score given a query-passage pair and are used to order search results coming from Keyword and Vector search.

Here is an overview of the models we deliver publicly:

Model Languages Relevance Inference Time GPU Memory
passage-ranker-v1-XS-en en 0.438 20 ms 170 MiB
passage-ranker-v1-XS-multilingual de, en, es, fr 0.453 21 ms 300 MiB
passage-ranker-v1-L-en en 0.466 356 ms 1060 MiB
passage-ranker-v1-L-multilingual de, en, es, fr 0.471 357 ms 1130 MiB
passage-ranker.chocolate en 0.484 64 ms 550 MiB
passage-ranker.strawberry de, en, es, fr, it, ja, nl, pt, zs 0.451 63 ms 1060 MiB
passage-ranker.mango de, en, es, fr, it, ja, nl, pt, zs, zh-trad 0.480 358 ms 1070 MiB
passage-ranker.pistachio de, en, es, fr, it, ja, nl, pl, pt, zs, zh-trad 0.380 358 ms 1070 MiB

datasets

None public yet