text-summarization / README.md
scottn66's picture
update model card README.md
0712df4
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: text-summarization
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1405
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# text-summarization
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4284
- Rouge1: 0.1405
- Rouge2: 0.0517
- Rougel: 0.1158
- Rougelsum: 0.1157
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.7231 | 0.1246 | 0.0356 | 0.1039 | 0.1039 | 19.0 |
| No log | 2.0 | 124 | 2.5099 | 0.1335 | 0.0463 | 0.1116 | 0.1116 | 19.0 |
| No log | 3.0 | 186 | 2.4451 | 0.1383 | 0.0509 | 0.114 | 0.114 | 19.0 |
| No log | 4.0 | 248 | 2.4284 | 0.1405 | 0.0517 | 0.1158 | 0.1157 | 19.0 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2