--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: text-summarization results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1405 --- # text-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4284 - Rouge1: 0.1405 - Rouge2: 0.0517 - Rougel: 0.1158 - Rougelsum: 0.1157 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.7231 | 0.1246 | 0.0356 | 0.1039 | 0.1039 | 19.0 | | No log | 2.0 | 124 | 2.5099 | 0.1335 | 0.0463 | 0.1116 | 0.1116 | 19.0 | | No log | 3.0 | 186 | 2.4451 | 0.1383 | 0.0509 | 0.114 | 0.114 | 19.0 | | No log | 4.0 | 248 | 2.4284 | 0.1405 | 0.0517 | 0.1158 | 0.1157 | 19.0 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2