sajjadi's picture
Model save
a7f9eeb verified
|
raw
history blame
2.53 kB
metadata
base_model: google/vit-base-patch16-224-in21k
library_name: peft
license: apache-2.0
metrics:
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: vit-base-patch16-224-in21k-lora
    results: []

Visualize in Weights & Biases Visualize in Weights & Biases

vit-base-patch16-224-in21k-lora

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1775
  • Accuracy: 0.53

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.002
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 4.5232 0.07
No log 2.0 2 4.4532 0.18
No log 3.0 3 4.3919 0.35
No log 4.0 4 4.3384 0.42
4.4214 5.0 5 4.2923 0.44
4.4214 6.0 6 4.2543 0.48
4.4214 7.0 7 4.2232 0.49
4.4214 8.0 8 4.2006 0.52
4.4214 9.0 9 4.1852 0.53
4.1244 10.0 10 4.1775 0.53

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0