File size: 2,532 Bytes
6dea574
 
 
 
a7f9eeb
 
6dea574
 
 
 
 
 
 
 
 
 
83de2d3
 
6dea574
 
 
a7f9eeb
 
 
6dea574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69c985e
ef49d39
 
6dea574
69c985e
ef49d39
6dea574
 
9bd216f
6dea574
 
a7f9eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dea574
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: google/vit-base-patch16-224-in21k
library_name: peft
license: apache-2.0
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: vit-base-patch16-224-in21k-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sajjadi/Fast-PEFT/runs/qhj1jlcv)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sajjadi/Fast-PEFT/runs/qhj1jlcv)
# vit-base-patch16-224-in21k-lora

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1775
- Accuracy: 0.53

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 1    | 4.5232          | 0.07     |
| No log        | 2.0   | 2    | 4.4532          | 0.18     |
| No log        | 3.0   | 3    | 4.3919          | 0.35     |
| No log        | 4.0   | 4    | 4.3384          | 0.42     |
| 4.4214        | 5.0   | 5    | 4.2923          | 0.44     |
| 4.4214        | 6.0   | 6    | 4.2543          | 0.48     |
| 4.4214        | 7.0   | 7    | 4.2232          | 0.49     |
| 4.4214        | 8.0   | 8    | 4.2006          | 0.52     |
| 4.4214        | 9.0   | 9    | 4.1852          | 0.53     |
| 4.1244        | 10.0  | 10   | 4.1775          | 0.53     |


### Framework versions

- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0