|
--- |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:10501 |
|
- loss:CosineSimilarityLoss |
|
widget: |
|
- source_sentence: 추운날이니 외출은 자제해주시기 바랍니다. |
|
sentences: |
|
- 추운날인데 외출하지마 |
|
- 소·돼지에 대해서만 실시하던 축산물이력제가 1월 1일부터 닭·오리·계란까지 확대·시행된다. |
|
- 광고메일함 비중이 에어비앤비가 더 높니 트립닷컴이 더 많니? |
|
- source_sentence: 샤워기도 수압이 너무 약해서 불편해요. |
|
sentences: |
|
- 숙소 내부가 넓고 호스트도 1층에 있어 불편사항에 대한 피드백을 즉시 받으실 수 있습니다. |
|
- 그외에 물놀이를 하기위한 준비물들 파라솔 비치의자 어린이비치의자 아이스박스 핸드케리어 비치타월 모레놀이도구 등등 필요한 모든것이 완벽했습니다. |
|
- 샤워는 수압이 너무 약해서 불편해요. |
|
- source_sentence: 조용한 분위기의 방을 구하시면 이 곳이 최고입니다! |
|
sentences: |
|
- 시험을 이번달에 본다고 했니 다음달에 본다고 했니? |
|
- 조용한 방을 찾는다면, 이곳이 최고예요! |
|
- 어른들과 만나는 자리에는 어른들보다 늦게 도착하지 말고 일찍 나가 있어라. |
|
- source_sentence: 발코니쪽 창문은 3개중에 한개만 열수있습니다. |
|
sentences: |
|
- 많은 장비를 구매할 필요 없이 즐길 수 있습니다. |
|
- 우리는 그 숙소에서 호바트의 최상의 상태를 유지할 수 있었습니다. |
|
- 직장가입자의 급여명세서, 지역가입자의 건강보험 급여통지서를 확인하실 수 있습니다. |
|
- source_sentence: 국민 추천으로 ‘금융규제 유연화로 선제적 금융권 지원역량 강화’도 우수 사례로 언급됐다. |
|
sentences: |
|
- 국민의 권고에 따라 '유연한 금융규제 등을 통해 선제적으로 금융분야 지원능력 강화'도 좋은 사례로 꼽혔습니다. |
|
- 사진으로 보이는거 보다 숙소는 넓었고요 |
|
- 저는 다음에 대만을 간다면 무조건 재방문 할 예정입니다! |
|
model-index: |
|
- name: SentenceTransformer |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9626619602187976 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9247880695962829 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.9555167285690431 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.923408354022865 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9556439523907834 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.9235806565450854 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.957361957340705 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.9130155209197447 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9626619602187976 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.9247880695962829 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': True}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'국민 추천으로 ‘금융규제 유연화로 선제적 금융권 지원역량 강화’도 우수 사례로 언급됐다.', |
|
"국민의 권고에 따라 '유연한 금융규제 등을 통해 선제적으로 금융분야 지원능력 강화'도 좋은 사례로 꼽혔습니다.", |
|
'사진으로 보이는거 보다 숙소는 넓었고요', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.9627 | |
|
| spearman_cosine | 0.9248 | |
|
| pearson_manhattan | 0.9555 | |
|
| spearman_manhattan | 0.9234 | |
|
| pearson_euclidean | 0.9556 | |
|
| spearman_euclidean | 0.9236 | |
|
| pearson_dot | 0.9574 | |
|
| spearman_dot | 0.913 | |
|
| pearson_max | 0.9627 | |
|
| **spearman_max** | **0.9248** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 10,501 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 20.16 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.75 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:------------------------------------|:------------------------------------------------|:-----------------| |
|
| <code>단점을 꼽자면 엘베가 없다는 점 정도?</code> | <code>굳이 단점을 꼽자면 늦은 밤에는 역 근처가 살짝 무섭다는 거?</code> | <code>0.2</code> | |
|
| <code>더울 때는 청량음료 말고 물 많이 마셔.</code> | <code>추울 때 손과 발은 내놓지 말자.</code> | <code>0.0</code> | |
|
| <code>위치, 시설, 호스팅 모두 만족했습니다.</code> | <code>위치, 시설, 호스팅 모두 만족스러웠습니다.</code> | <code>1.0</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `num_train_epochs`: 7 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 7 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sts-dev_spearman_max | |
|
|:------:|:----:|:-------------:|:--------------------:| |
|
| 1.0 | 329 | - | 0.9218 | |
|
| 1.5198 | 500 | 0.0096 | - | |
|
| 2.0 | 658 | - | 0.9218 | |
|
| 3.0 | 987 | - | 0.9215 | |
|
| 3.0395 | 1000 | 0.0064 | 0.9218 | |
|
| 4.0 | 1316 | - | 0.9231 | |
|
| 4.5593 | 1500 | 0.0055 | - | |
|
| 5.0 | 1645 | - | 0.9231 | |
|
| 6.0 | 1974 | - | 0.9235 | |
|
| 6.0790 | 2000 | 0.0045 | 0.9226 | |
|
| 7.0 | 2303 | - | 0.9248 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.4.1+cu121 |
|
- Accelerate: 0.34.2 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |