roomnumber103 commited on
Commit
7324130
·
1 Parent(s): 4bf8a19
.DS_Store ADDED
Binary file (6.15 kB). View file
 
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,421 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ metrics:
4
+ - pearson_cosine
5
+ - spearman_cosine
6
+ - pearson_manhattan
7
+ - spearman_manhattan
8
+ - pearson_euclidean
9
+ - spearman_euclidean
10
+ - pearson_dot
11
+ - spearman_dot
12
+ - pearson_max
13
+ - spearman_max
14
+ pipeline_tag: sentence-similarity
15
+ tags:
16
+ - sentence-transformers
17
+ - sentence-similarity
18
+ - feature-extraction
19
+ - generated_from_trainer
20
+ - dataset_size:10501
21
+ - loss:CosineSimilarityLoss
22
+ widget:
23
+ - source_sentence: 추운날이니 외출은 자제해주시기 바랍니다.
24
+ sentences:
25
+ - 추운날인데 외출하지마
26
+ - 소·돼지에 대해서만 실시하던 축산물이력제가 1월 1일부터 닭·오리·계란까지 확대·시행된다.
27
+ - 광고메일함 비중이 에어비앤비가 더 높니 트립닷컴이 더 많니?
28
+ - source_sentence: 샤워기도 수압이 너무 약해서 불편해요.
29
+ sentences:
30
+ - 숙소 내부가 넓고 호스트도 1층에 있어 불편사항에 대한 피드백을 즉시 받으실 수 있습니다.
31
+ - 그외에 물놀이를 하기위한 준비물들 파라솔 비치의자 어린이비치의자 아이스박스 핸드케리어 비치타월 모레놀이도구 등등 필요한 모든것이 완벽했습니다.
32
+ - 샤워는 수압이 너무 약해서 불편해요.
33
+ - source_sentence: 조용한 분위기의 방을 구하시면 이 곳이 최고입니다!
34
+ sentences:
35
+ - 시험을 이번달에 본다고 했니 다음달에 본다고 했니?
36
+ - 조용한 방을 찾는다면, 이곳이 최고예요!
37
+ - 어른들과 만나는 자리에는 어른들보다 늦게 도착하지 말고 일찍 나가 있어라.
38
+ - source_sentence: 발코니쪽 창문은 3개중에 한개만 열수있습니다.
39
+ sentences:
40
+ - 많은 장비를 구매할 필요 없이 즐길 수 있습니다.
41
+ - 우리는 그 숙소에서 호바트의 최상의 상태를 유지할 수 있었습니다.
42
+ - 직장가입자의 급여명세서, 지역가입자의 건강보험 급여통지서를 확인하실 수 있습니다.
43
+ - source_sentence: 국민 추천으로 ‘금융규제 유연화로 선제적 금융권 지원역량 강화’도 우수 사례로 언급됐다.
44
+ sentences:
45
+ - 국민의 권고에 따라 '유연한 금융규제 등을 통해 선제적으로 금융분야 지원능력 강화'도 좋은 사례로 꼽혔습니다.
46
+ - 사진으로 보이는거 보다 숙소는 넓었고요
47
+ - 저는 다음에 대만을 간다면 무조건 재방문 할 예정입니다!
48
+ model-index:
49
+ - name: SentenceTransformer
50
+ results:
51
+ - task:
52
+ type: semantic-similarity
53
+ name: Semantic Similarity
54
+ dataset:
55
+ name: sts dev
56
+ type: sts-dev
57
+ metrics:
58
+ - type: pearson_cosine
59
+ value: 0.9626619602187976
60
+ name: Pearson Cosine
61
+ - type: spearman_cosine
62
+ value: 0.9247880695962829
63
+ name: Spearman Cosine
64
+ - type: pearson_manhattan
65
+ value: 0.9555167285690431
66
+ name: Pearson Manhattan
67
+ - type: spearman_manhattan
68
+ value: 0.923408354022865
69
+ name: Spearman Manhattan
70
+ - type: pearson_euclidean
71
+ value: 0.9556439523907834
72
+ name: Pearson Euclidean
73
+ - type: spearman_euclidean
74
+ value: 0.9235806565450854
75
+ name: Spearman Euclidean
76
+ - type: pearson_dot
77
+ value: 0.957361957340705
78
+ name: Pearson Dot
79
+ - type: spearman_dot
80
+ value: 0.9130155209197447
81
+ name: Spearman Dot
82
+ - type: pearson_max
83
+ value: 0.9626619602187976
84
+ name: Pearson Max
85
+ - type: spearman_max
86
+ value: 0.9247880695962829
87
+ name: Spearman Max
88
+ ---
89
+
90
+ # SentenceTransformer
91
+
92
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
93
+
94
+ ## Model Details
95
+
96
+ ### Model Description
97
+ - **Model Type:** Sentence Transformer
98
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
99
+ - **Maximum Sequence Length:** 256 tokens
100
+ - **Output Dimensionality:** 768 tokens
101
+ - **Similarity Function:** Cosine Similarity
102
+ <!-- - **Training Dataset:** Unknown -->
103
+ <!-- - **Language:** Unknown -->
104
+ <!-- - **License:** Unknown -->
105
+
106
+ ### Model Sources
107
+
108
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
109
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
110
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
111
+
112
+ ### Full Model Architecture
113
+
114
+ ```
115
+ SentenceTransformer(
116
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': True}) with Transformer model: RobertaModel
117
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
118
+ )
119
+ ```
120
+
121
+ ## Usage
122
+
123
+ ### Direct Usage (Sentence Transformers)
124
+
125
+ First install the Sentence Transformers library:
126
+
127
+ ```bash
128
+ pip install -U sentence-transformers
129
+ ```
130
+
131
+ Then you can load this model and run inference.
132
+ ```python
133
+ from sentence_transformers import SentenceTransformer
134
+
135
+ # Download from the 🤗 Hub
136
+ model = SentenceTransformer("sentence_transformers_model_id")
137
+ # Run inference
138
+ sentences = [
139
+ '국민 추천으로 ‘금융규제 유연화로 선제적 금융권 지원역량 강화’도 우수 사례로 언급됐다.',
140
+ "국민의 권고에 따라 '유연한 금융규제 등을 통해 선제적으로 금융분야 지원능력 강화'도 좋은 사례로 꼽혔습니다.",
141
+ '사진으로 보이는거 보다 숙소는 넓었고요',
142
+ ]
143
+ embeddings = model.encode(sentences)
144
+ print(embeddings.shape)
145
+ # [3, 768]
146
+
147
+ # Get the similarity scores for the embeddings
148
+ similarities = model.similarity(embeddings, embeddings)
149
+ print(similarities.shape)
150
+ # [3, 3]
151
+ ```
152
+
153
+ <!--
154
+ ### Direct Usage (Transformers)
155
+
156
+ <details><summary>Click to see the direct usage in Transformers</summary>
157
+
158
+ </details>
159
+ -->
160
+
161
+ <!--
162
+ ### Downstream Usage (Sentence Transformers)
163
+
164
+ You can finetune this model on your own dataset.
165
+
166
+ <details><summary>Click to expand</summary>
167
+
168
+ </details>
169
+ -->
170
+
171
+ <!--
172
+ ### Out-of-Scope Use
173
+
174
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
175
+ -->
176
+
177
+ ## Evaluation
178
+
179
+ ### Metrics
180
+
181
+ #### Semantic Similarity
182
+ * Dataset: `sts-dev`
183
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
184
+
185
+ | Metric | Value |
186
+ |:-------------------|:-----------|
187
+ | pearson_cosine | 0.9627 |
188
+ | spearman_cosine | 0.9248 |
189
+ | pearson_manhattan | 0.9555 |
190
+ | spearman_manhattan | 0.9234 |
191
+ | pearson_euclidean | 0.9556 |
192
+ | spearman_euclidean | 0.9236 |
193
+ | pearson_dot | 0.9574 |
194
+ | spearman_dot | 0.913 |
195
+ | pearson_max | 0.9627 |
196
+ | **spearman_max** | **0.9248** |
197
+
198
+ <!--
199
+ ## Bias, Risks and Limitations
200
+
201
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
202
+ -->
203
+
204
+ <!--
205
+ ### Recommendations
206
+
207
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
208
+ -->
209
+
210
+ ## Training Details
211
+
212
+ ### Training Dataset
213
+
214
+ #### Unnamed Dataset
215
+
216
+
217
+ * Size: 10,501 training samples
218
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
219
+ * Approximate statistics based on the first 1000 samples:
220
+ | | sentence_0 | sentence_1 | label |
221
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
222
+ | type | string | string | float |
223
+ | details | <ul><li>min: 5 tokens</li><li>mean: 20.16 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.75 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
224
+ * Samples:
225
+ | sentence_0 | sentence_1 | label |
226
+ |:------------------------------------|:------------------------------------------------|:-----------------|
227
+ | <code>단점을 꼽자면 엘베가 없다는 점 정도?</code> | <code>굳이 단점을 꼽자면 늦은 밤에는 역 근처가 살짝 무섭다는 거?</code> | <code>0.2</code> |
228
+ | <code>더울 때는 청량음료 말고 물 많이 마셔.</code> | <code>추울 때 손과 발은 내놓지 말자.</code> | <code>0.0</code> |
229
+ | <code>위치, 시설, 호스팅 모두 만족했습니다.</code> | <code>위치, 시설, 호스팅 모두 만족스러웠습니다.</code> | <code>1.0</code> |
230
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
231
+ ```json
232
+ {
233
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
234
+ }
235
+ ```
236
+
237
+ ### Training Hyperparameters
238
+ #### Non-Default Hyperparameters
239
+
240
+ - `eval_strategy`: steps
241
+ - `per_device_train_batch_size`: 32
242
+ - `per_device_eval_batch_size`: 32
243
+ - `num_train_epochs`: 7
244
+ - `multi_dataset_batch_sampler`: round_robin
245
+
246
+ #### All Hyperparameters
247
+ <details><summary>Click to expand</summary>
248
+
249
+ - `overwrite_output_dir`: False
250
+ - `do_predict`: False
251
+ - `eval_strategy`: steps
252
+ - `prediction_loss_only`: True
253
+ - `per_device_train_batch_size`: 32
254
+ - `per_device_eval_batch_size`: 32
255
+ - `per_gpu_train_batch_size`: None
256
+ - `per_gpu_eval_batch_size`: None
257
+ - `gradient_accumulation_steps`: 1
258
+ - `eval_accumulation_steps`: None
259
+ - `torch_empty_cache_steps`: None
260
+ - `learning_rate`: 5e-05
261
+ - `weight_decay`: 0.0
262
+ - `adam_beta1`: 0.9
263
+ - `adam_beta2`: 0.999
264
+ - `adam_epsilon`: 1e-08
265
+ - `max_grad_norm`: 1
266
+ - `num_train_epochs`: 7
267
+ - `max_steps`: -1
268
+ - `lr_scheduler_type`: linear
269
+ - `lr_scheduler_kwargs`: {}
270
+ - `warmup_ratio`: 0.0
271
+ - `warmup_steps`: 0
272
+ - `log_level`: passive
273
+ - `log_level_replica`: warning
274
+ - `log_on_each_node`: True
275
+ - `logging_nan_inf_filter`: True
276
+ - `save_safetensors`: True
277
+ - `save_on_each_node`: False
278
+ - `save_only_model`: False
279
+ - `restore_callback_states_from_checkpoint`: False
280
+ - `no_cuda`: False
281
+ - `use_cpu`: False
282
+ - `use_mps_device`: False
283
+ - `seed`: 42
284
+ - `data_seed`: None
285
+ - `jit_mode_eval`: False
286
+ - `use_ipex`: False
287
+ - `bf16`: False
288
+ - `fp16`: False
289
+ - `fp16_opt_level`: O1
290
+ - `half_precision_backend`: auto
291
+ - `bf16_full_eval`: False
292
+ - `fp16_full_eval`: False
293
+ - `tf32`: None
294
+ - `local_rank`: 0
295
+ - `ddp_backend`: None
296
+ - `tpu_num_cores`: None
297
+ - `tpu_metrics_debug`: False
298
+ - `debug`: []
299
+ - `dataloader_drop_last`: False
300
+ - `dataloader_num_workers`: 0
301
+ - `dataloader_prefetch_factor`: None
302
+ - `past_index`: -1
303
+ - `disable_tqdm`: False
304
+ - `remove_unused_columns`: True
305
+ - `label_names`: None
306
+ - `load_best_model_at_end`: False
307
+ - `ignore_data_skip`: False
308
+ - `fsdp`: []
309
+ - `fsdp_min_num_params`: 0
310
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
311
+ - `fsdp_transformer_layer_cls_to_wrap`: None
312
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
313
+ - `deepspeed`: None
314
+ - `label_smoothing_factor`: 0.0
315
+ - `optim`: adamw_torch
316
+ - `optim_args`: None
317
+ - `adafactor`: False
318
+ - `group_by_length`: False
319
+ - `length_column_name`: length
320
+ - `ddp_find_unused_parameters`: None
321
+ - `ddp_bucket_cap_mb`: None
322
+ - `ddp_broadcast_buffers`: False
323
+ - `dataloader_pin_memory`: True
324
+ - `dataloader_persistent_workers`: False
325
+ - `skip_memory_metrics`: True
326
+ - `use_legacy_prediction_loop`: False
327
+ - `push_to_hub`: False
328
+ - `resume_from_checkpoint`: None
329
+ - `hub_model_id`: None
330
+ - `hub_strategy`: every_save
331
+ - `hub_private_repo`: False
332
+ - `hub_always_push`: False
333
+ - `gradient_checkpointing`: False
334
+ - `gradient_checkpointing_kwargs`: None
335
+ - `include_inputs_for_metrics`: False
336
+ - `eval_do_concat_batches`: True
337
+ - `fp16_backend`: auto
338
+ - `push_to_hub_model_id`: None
339
+ - `push_to_hub_organization`: None
340
+ - `mp_parameters`:
341
+ - `auto_find_batch_size`: False
342
+ - `full_determinism`: False
343
+ - `torchdynamo`: None
344
+ - `ray_scope`: last
345
+ - `ddp_timeout`: 1800
346
+ - `torch_compile`: False
347
+ - `torch_compile_backend`: None
348
+ - `torch_compile_mode`: None
349
+ - `dispatch_batches`: None
350
+ - `split_batches`: None
351
+ - `include_tokens_per_second`: False
352
+ - `include_num_input_tokens_seen`: False
353
+ - `neftune_noise_alpha`: None
354
+ - `optim_target_modules`: None
355
+ - `batch_eval_metrics`: False
356
+ - `eval_on_start`: False
357
+ - `eval_use_gather_object`: False
358
+ - `batch_sampler`: batch_sampler
359
+ - `multi_dataset_batch_sampler`: round_robin
360
+
361
+ </details>
362
+
363
+ ### Training Logs
364
+ | Epoch | Step | Training Loss | sts-dev_spearman_max |
365
+ |:------:|:----:|:-------------:|:--------------------:|
366
+ | 1.0 | 329 | - | 0.9218 |
367
+ | 1.5198 | 500 | 0.0096 | - |
368
+ | 2.0 | 658 | - | 0.9218 |
369
+ | 3.0 | 987 | - | 0.9215 |
370
+ | 3.0395 | 1000 | 0.0064 | 0.9218 |
371
+ | 4.0 | 1316 | - | 0.9231 |
372
+ | 4.5593 | 1500 | 0.0055 | - |
373
+ | 5.0 | 1645 | - | 0.9231 |
374
+ | 6.0 | 1974 | - | 0.9235 |
375
+ | 6.0790 | 2000 | 0.0045 | 0.9226 |
376
+ | 7.0 | 2303 | - | 0.9248 |
377
+
378
+
379
+ ### Framework Versions
380
+ - Python: 3.10.12
381
+ - Sentence Transformers: 3.1.1
382
+ - Transformers: 4.44.2
383
+ - PyTorch: 2.4.1+cu121
384
+ - Accelerate: 0.34.2
385
+ - Datasets: 3.0.1
386
+ - Tokenizers: 0.19.1
387
+
388
+ ## Citation
389
+
390
+ ### BibTeX
391
+
392
+ #### Sentence Transformers
393
+ ```bibtex
394
+ @inproceedings{reimers-2019-sentence-bert,
395
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
396
+ author = "Reimers, Nils and Gurevych, Iryna",
397
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
398
+ month = "11",
399
+ year = "2019",
400
+ publisher = "Association for Computational Linguistics",
401
+ url = "https://arxiv.org/abs/1908.10084",
402
+ }
403
+ ```
404
+
405
+ <!--
406
+ ## Glossary
407
+
408
+ *Clearly define terms in order to be accessible across audiences.*
409
+ -->
410
+
411
+ <!--
412
+ ## Model Card Authors
413
+
414
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
415
+ -->
416
+
417
+ <!--
418
+ ## Model Card Contact
419
+
420
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
421
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/MyDrive/models/nli-finetuned-model",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ec8f35b9a84f39a2541ce09af135f9d37976e0758c8cbda2426812d07bdf7e0
3
+ size 442494816
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 256,
52
+ "model_max_length": 256,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff