cosmo3769's picture
Update README.md
adf0165 verified
metadata
base_model: google/paligemma-3b-pt-224
library_name: peft
license: gemma
tags:
  - generated_from_trainer
model-index:
  - name: finetuned_paligemma_vqav2_small
    results: []

finetuned_paligemma_vqav2_small

This model is a fine-tuned version of google/paligemma-3b-pt-224 using the QLoRA technique on a small chunk of vqav2 dataset by Merve.

How to Use?

import torch
import requests

from PIL import Image
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration

pretrained_model_id = "google/paligemma-3b-pt-224"
finetuned_model_id = "pyimagesearch/finetuned_paligemma_vqav2_small"

processor = AutoProcessor.from_pretrained(pretrained_model_id)
finetuned_model = PaliGemmaForConditionalGeneration.from_pretrained(finetuned_model_id)

prompt = "What is behind the cat?"
image_file = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cat.png?download=true"
raw_image = Image.open(requests.get(image_file, stream=True).raw)

inputs = processor(raw_image.convert("RGB"), prompt, return_tensors="pt")
output = finetuned_model.generate(**inputs, max_new_tokens=20)

print(processor.decode(output[0], skip_special_tokens=True)[len(prompt):])
# gramophone

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 2

Training results

unnamed.png

Framework versions

  • PEFT 0.13.0
  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0