--- base_model: google/paligemma-3b-pt-224 library_name: peft license: gemma tags: - generated_from_trainer model-index: - name: finetuned_paligemma_vqav2_small results: [] --- # finetuned_paligemma_vqav2_small This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) using the QLoRA technique on a small chunk of [vqav2 dataset](https://huggingface.co/datasets/merve/vqav2-small) by [Merve](https://huggingface.co/merve). ## How to Use? ```python import torch import requests from PIL import Image from transformers import AutoProcessor, PaliGemmaForConditionalGeneration pretrained_model_id = "google/paligemma-3b-pt-224" finetuned_model_id = "pyimagesearch/finetuned_paligemma_vqav2_small" processor = AutoProcessor.from_pretrained(pretrained_model_id) finetuned_model = PaliGemmaForConditionalGeneration.from_pretrained(finetuned_model_id) prompt = "What is behind the cat?" image_file = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cat.png?download=true" raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = processor(raw_image.convert("RGB"), prompt, return_tensors="pt") output = finetuned_model.generate(**inputs, max_new_tokens=20) print(processor.decode(output[0], skip_special_tokens=True)[len(prompt):]) # gramophone ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 ### Training results ![unnamed.png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F62818ecf52815a0dc73c6f1e%2FJvIRYy9_5efTQqo0S8PcB.png) ### Framework versions - PEFT 0.13.0 - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0