metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-base-patch4-window7-224-in22k-finetuned_swinv1-autotags-224
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9675126903553299
swin-base-patch4-window7-224-in22k-finetuned_swinv1-autotags-224
This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1186
- Accuracy: 0.9675
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1468 | 0.99 | 61 | 0.8540 | 0.7503 |
0.6167 | 1.99 | 122 | 0.3772 | 0.8904 |
0.45 | 2.99 | 183 | 0.2963 | 0.9086 |
0.2163 | 3.99 | 244 | 0.2172 | 0.9391 |
0.209 | 4.99 | 305 | 0.1733 | 0.9431 |
0.1558 | 5.99 | 366 | 0.2101 | 0.9310 |
0.109 | 6.99 | 427 | 0.1268 | 0.9655 |
0.1214 | 7.99 | 488 | 0.1251 | 0.9706 |
0.1471 | 8.99 | 549 | 0.1194 | 0.9665 |
0.0888 | 9.99 | 610 | 0.1376 | 0.9574 |
0.1077 | 10.99 | 671 | 0.1211 | 0.9614 |
0.0969 | 11.99 | 732 | 0.1231 | 0.9695 |
0.0585 | 12.99 | 793 | 0.1472 | 0.9553 |
0.0659 | 13.99 | 854 | 0.1203 | 0.9655 |
0.0645 | 14.99 | 915 | 0.1405 | 0.9614 |
0.0472 | 15.99 | 976 | 0.1340 | 0.9604 |
0.0616 | 16.99 | 1037 | 0.1272 | 0.9655 |
0.0609 | 17.99 | 1098 | 0.1121 | 0.9685 |
0.0525 | 18.99 | 1159 | 0.1162 | 0.9685 |
0.0406 | 19.99 | 1220 | 0.1186 | 0.9675 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.10.2+cu113
- Datasets 2.10.1
- Tokenizers 0.13.2