priyankloco's picture
update model card README.md
38baf03
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-base-patch4-window7-224-in22k-finetuned_swinv1-autotags-224
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9675126903553299

swin-base-patch4-window7-224-in22k-finetuned_swinv1-autotags-224

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1186
  • Accuracy: 0.9675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1468 0.99 61 0.8540 0.7503
0.6167 1.99 122 0.3772 0.8904
0.45 2.99 183 0.2963 0.9086
0.2163 3.99 244 0.2172 0.9391
0.209 4.99 305 0.1733 0.9431
0.1558 5.99 366 0.2101 0.9310
0.109 6.99 427 0.1268 0.9655
0.1214 7.99 488 0.1251 0.9706
0.1471 8.99 549 0.1194 0.9665
0.0888 9.99 610 0.1376 0.9574
0.1077 10.99 671 0.1211 0.9614
0.0969 11.99 732 0.1231 0.9695
0.0585 12.99 793 0.1472 0.9553
0.0659 13.99 854 0.1203 0.9655
0.0645 14.99 915 0.1405 0.9614
0.0472 15.99 976 0.1340 0.9604
0.0616 16.99 1037 0.1272 0.9655
0.0609 17.99 1098 0.1121 0.9685
0.0525 18.99 1159 0.1162 0.9685
0.0406 19.99 1220 0.1186 0.9675

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.10.2+cu113
  • Datasets 2.10.1
  • Tokenizers 0.13.2