swin-base-patch4-window7-224-in22k-finetuned_swinv1-autotags-224

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1186
  • Accuracy: 0.9675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1468 0.99 61 0.8540 0.7503
0.6167 1.99 122 0.3772 0.8904
0.45 2.99 183 0.2963 0.9086
0.2163 3.99 244 0.2172 0.9391
0.209 4.99 305 0.1733 0.9431
0.1558 5.99 366 0.2101 0.9310
0.109 6.99 427 0.1268 0.9655
0.1214 7.99 488 0.1251 0.9706
0.1471 8.99 549 0.1194 0.9665
0.0888 9.99 610 0.1376 0.9574
0.1077 10.99 671 0.1211 0.9614
0.0969 11.99 732 0.1231 0.9695
0.0585 12.99 793 0.1472 0.9553
0.0659 13.99 854 0.1203 0.9655
0.0645 14.99 915 0.1405 0.9614
0.0472 15.99 976 0.1340 0.9604
0.0616 16.99 1037 0.1272 0.9655
0.0609 17.99 1098 0.1121 0.9685
0.0525 18.99 1159 0.1162 0.9685
0.0406 19.99 1220 0.1186 0.9675

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.10.2+cu113
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results