|
--- |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: scb10x/typhoon-7b |
|
model-index: |
|
- name: work/out |
|
results: [] |
|
datasets: |
|
- pythainlp/thai_food_v1.0 |
|
- ping98k/thai_food_v1.0 |
|
language: |
|
- th |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: ./models/scb10x_typhoon-7b |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
is_mistral_derived_model: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
|
|
datasets: |
|
- path: ./work/thai_food.json |
|
type: completion |
|
|
|
dataset_prepared_path: ./work/last_run_prepared |
|
val_set_size: 0.1 |
|
output_dir: ./work/out |
|
|
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 4096 |
|
sample_packing: false |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
gpu_memory_limit: 20 |
|
|
|
lora_r: 64 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
|
|
wandb_project: typhoon-7b |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 3 |
|
optimizer: paged_adamw_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0004 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: 3 |
|
resume_from_checkpoint: false |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
# loss_watchdog_threshold: 5.0 |
|
# loss_watchdog_patience: 3 |
|
|
|
warmup_ratio: 0.01 |
|
# evals_per_epoch: 10 |
|
eval_steps: 2 |
|
eval_table_size: |
|
eval_table_max_new_tokens: 128 |
|
# saves_per_epoch: 10 |
|
save_steps: 2 |
|
save_total_limit: 20 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
``` |
|
|
|
</details><br> |
|
|
|
# ping98k/typhoon-thai-food-lora |
|
|
|
This model was trained from thai_food dataset but re-order header to เครื่องปรุง -> วิธีทำ -> ชื่ออาหาร. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9505 |
|
|
|
## Model description |
|
|
|
fill ingredients then model will create new menu. |
|
|
|
|
|
### prompt |
|
you can let model fill more ingredients by remove `## วิธีทำ` from prompt |
|
|
|
input |
|
|
|
``` |
|
## เครื่องปรุง |
|
- ไข่เป็ด |
|
- ใบเตย |
|
``` |
|
or |
|
``` |
|
## เครื่องปรุง |
|
- ไข่เป็ด |
|
- ใบเตย |
|
|
|
## วิธีทำ |
|
``` |
|
output |
|
``` |
|
ปอกไข่ แช่น้ำใบเตยให้ทั่ว แล้วใส่ชามแช่ไว้ประมาณ 15 นาที ยกขึ้นล้างน้ำเย็นจัด (อย่าใช้น้ำแข็ง) จึงแกะสลัก |
|
|
|
## ชื่ออาหาร |
|
ไข่เป็ดตุ๋นใบเตย |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0004 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.8268 | 0.13 | 2 | 2.4822 | |
|
| 2.4085 | 0.25 | 4 | 2.2715 | |
|
| 2.2752 | 0.38 | 6 | 2.1985 | |
|
| 2.4104 | 0.51 | 8 | 2.1000 | |
|
| 2.0149 | 0.63 | 10 | 2.0255 | |
|
| 2.1234 | 0.76 | 12 | 1.9926 | |
|
| 2.2013 | 0.89 | 14 | 1.9894 | |
|
| 1.8355 | 1.02 | 16 | 1.9684 | |
|
| 1.4604 | 1.14 | 18 | 1.9610 | |
|
| 1.6539 | 1.27 | 20 | 1.9517 | |
|
| 1.5531 | 1.4 | 22 | 1.9414 | |
|
| 1.4649 | 1.52 | 24 | 1.9230 | |
|
| 1.464 | 1.65 | 26 | 1.9214 | |
|
| 1.3731 | 1.78 | 28 | 1.9116 | |
|
| 1.4451 | 1.9 | 30 | 1.8922 | |
|
| 1.3635 | 2.03 | 32 | 1.8885 | |
|
| 1.1453 | 2.16 | 34 | 1.9034 | |
|
| 1.0397 | 2.29 | 36 | 1.9281 | |
|
| 0.9735 | 2.41 | 38 | 1.9505 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1 |
|
- Transformers 4.37.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |