See axolotl config
axolotl version: 0.4.0
base_model: ./models/scb10x_typhoon-7b
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ./work/thai_food.json
type: completion
dataset_prepared_path: ./work/last_run_prepared
val_set_size: 0.1
output_dir: ./work/out
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
gpu_memory_limit: 20
lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: typhoon-7b
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0004
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience: 3
resume_from_checkpoint: false
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
# loss_watchdog_threshold: 5.0
# loss_watchdog_patience: 3
warmup_ratio: 0.01
# evals_per_epoch: 10
eval_steps: 2
eval_table_size:
eval_table_max_new_tokens: 128
# saves_per_epoch: 10
save_steps: 2
save_total_limit: 20
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
ping98k/typhoon-thai-food-lora
This model was trained from thai_food dataset but re-order header to เครื่องปรุง -> วิธีทำ -> ชื่ออาหาร. It achieves the following results on the evaluation set:
- Loss: 1.9505
Model description
fill ingredients then model will create new menu.
prompt
you can let model fill more ingredients by remove ## วิธีทำ
from prompt
input
## เครื่องปรุง
- ไข่เป็ด
- ใบเตย
or
## เครื่องปรุง
- ไข่เป็ด
- ใบเตย
## วิธีทำ
output
ปอกไข่ แช่น้ำใบเตยให้ทั่ว แล้วใส่ชามแช่ไว้ประมาณ 15 นาที ยกขึ้นล้างน้ำเย็นจัด (อย่าใช้น้ำแข็ง) จึงแกะสลัก
## ชื่ออาหาร
ไข่เป็ดตุ๋นใบเตย
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8268 | 0.13 | 2 | 2.4822 |
2.4085 | 0.25 | 4 | 2.2715 |
2.2752 | 0.38 | 6 | 2.1985 |
2.4104 | 0.51 | 8 | 2.1000 |
2.0149 | 0.63 | 10 | 2.0255 |
2.1234 | 0.76 | 12 | 1.9926 |
2.2013 | 0.89 | 14 | 1.9894 |
1.8355 | 1.02 | 16 | 1.9684 |
1.4604 | 1.14 | 18 | 1.9610 |
1.6539 | 1.27 | 20 | 1.9517 |
1.5531 | 1.4 | 22 | 1.9414 |
1.4649 | 1.52 | 24 | 1.9230 |
1.464 | 1.65 | 26 | 1.9214 |
1.3731 | 1.78 | 28 | 1.9116 |
1.4451 | 1.9 | 30 | 1.8922 |
1.3635 | 2.03 | 32 | 1.8885 |
1.1453 | 2.16 | 34 | 1.9034 |
1.0397 | 2.29 | 36 | 1.9281 |
0.9735 | 2.41 | 38 | 1.9505 |
Framework versions
- PEFT 0.7.1
- Transformers 4.37.0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 3
Model tree for ping98k/typhoon-thai-food-lora
Base model
scb10x/typhoon-7b