resnet-50-finetuned / README.md
phuong-tk-nguyen's picture
update model card README.md
9f11be5
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.199
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-50-finetuned
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2724
- Accuracy: 0.199
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.3021 | 0.14 | 10 | 2.2994 | 0.112 |
| 2.2929 | 0.28 | 20 | 2.2911 | 0.137 |
| 2.2875 | 0.43 | 30 | 2.2848 | 0.151 |
| 2.2824 | 0.57 | 40 | 2.2812 | 0.175 |
| 2.2792 | 0.71 | 50 | 2.2758 | 0.191 |
| 2.2766 | 0.85 | 60 | 2.2726 | 0.197 |
| 2.2765 | 0.99 | 70 | 2.2724 | 0.199 |
### Framework versions
- Transformers 4.31.0
- Pytorch 1.10.1+cu111
- Datasets 2.14.6
- Tokenizers 0.13.3