--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.199 --- # resnet-50-finetuned This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.2724 - Accuracy: 0.199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3021 | 0.14 | 10 | 2.2994 | 0.112 | | 2.2929 | 0.28 | 20 | 2.2911 | 0.137 | | 2.2875 | 0.43 | 30 | 2.2848 | 0.151 | | 2.2824 | 0.57 | 40 | 2.2812 | 0.175 | | 2.2792 | 0.71 | 50 | 2.2758 | 0.191 | | 2.2766 | 0.85 | 60 | 2.2726 | 0.197 | | 2.2765 | 0.99 | 70 | 2.2724 | 0.199 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.10.1+cu111 - Datasets 2.14.6 - Tokenizers 0.13.3